Comparison of File Systems in RTEMS

Udit Kumar Agarwal
Netaji Subhas Institute of Technology
New Delhi, India
dev.madaari@gmail.com

Christian Mauderer
embedded brains GmbH
Pucheim, Germany
christian.mauderer@
embedded-brains.de

ABSTRACT

Real-Time Executive for Multiprocessor Systems (RTEMS) is an
open-source real-time operating system (RTOS) that is widely used
in commercial and free embedded applications with notable adop-
tion in space flight software and scientific instrument control for
space science and high energy physics. RTEMS has rich support
for POSIX environments and supports multiple POSIX and BSD file
systems, along with some custom file systems designed specifically
to meet the needs of real-time and embedded applications storage
and retrieval of data. The range of file systems available in RTEMS
motivates this study that investigates the salient features of each
file system to help identify strengths and weaknesses with respect
to application requirements and constraints. In this paper, we pro-
vide a comparison of the available RTEMS file systems and present
some performance benchmarking results.

CCS CONCEPTS

« Computer systems organization — Real-time operating sys-
tems; Embedded software; - Software and its engineering —
File systems management;

KEYWORDS
RTEMS, Filesystems, Benchmarking

ACM Reference Format:

Udit Kumar Agarwal, Vara Punit Ashokbhai, Gedare Bloom, Christian Maud-
erer, and Joel Sherrill. 2018. Comparison of File Systems in RTEMS. In Pro-
ceedings of EWiLi Embedded Operating System Workshop (EWiLi’18). ACM,
New York, NY, USA, 6 pages.

1 INTRODUCTION

Prior to the 1990s embedded applications were self-contained by de-
sign to include all the necessary code and storage to read and write
any persistent data such as application configuration settings and
file-like data objects. These applications used custom data formats
and hardware-specific code for interfacing with input/output (I/O)
storage peripherals. Reuse of code and formats across multiple ap-
plications, or even several generations of the same application with
new hardware, was not well-supported and resulted in lost develop-
ment time due to code redevelopment and debugging. These losses

EWIiLi’18, 4 October 2018, Torino, Italy
Copyright held by the owner/author(s)..

Vara Punit Ashokbhai
Bangalore, India
punitvara@gmail.com

Gedare Bloom
Howard University
Washington, DC, USA
gedare.bloom@howard.edu

Joel Sherrill
OAR Corp.
Huntsville, AL, USA
joel.sherrill@oarcorp.com

were mitigated by the advent of file system support in embedded
operating systems.

A file system encapsulates data storage and I/O access from
the abstract file view of application logic. Encapsulation leads to
better software engineering practices such as code reuse, modular
testing, and portable software. A modern real-time operating system
(RTOS) supports file systems as an important and necessary service
for applications or even RTOS storage requirements. For example,
RTOS configuration settings may be stored in files that are available
after the file system services are initialized by the kernel.

File system design and implementation in an embedded operat-
ing system has distinct challenges with respect to general-purpose
operating systems. In particular, an embedded OS is characterized
by having few to no human-user interfaces, remote or automatic
management, possibility of being rebooted by failure mode or fault
tolerance mechanisms, and constrained in availability of time, space,
and power resources. These characteristics motivate a strong re-
quirement that file systems in embedded and RTOS operate properly
in boundary and extreme cases, gracefully handle failures, and can
be made resource-efficient depending on the constraints of the
specific embedded application.

In this paper, we analyze the available file system support in the
Real-Time Executive for Multiprocessor Systems (RTEMS) RTOS
with a focus on the discriminating features of each file system. In
Section 3, we describe each file system and provide a qualitative
comparison of their strengths and weaknesses with a focus on how
file system features intend to meet specific application requirements.
Section 4 presents file system benchmarking results to give a notion
of the performance characteristics for some of the RTEMS file
systems. The contribution of this paper is a comprehensive analysis
and comparison of file systems in a widely-used open-source RTOS.

2 OVERVIEW OF RTEMS FILE SYSTEMS

The file system stack in RTEMS has evolved to include two inter-
twined stack implementations: the native stack and the 1ibbsd
stack. The native stack is a layered architecture for file system
design and implementation that separates the application program-
ming interface (API) of files from the storage media. The 1ibbsd
stack borrows code from the FreeBSD file system stack to supple-
ment the native stack with additional support for networking, USB,
and SD/MMC subsystems. In this section, we discuss the integration
of networking stacks with file systems in RTEMS and describe the

EWiLi’18, 4 October 2018, Torino, Italy Udit Kumar Agarwal, Vara Punit Ashokbhai, Gedare Bloom, Christian Mauderer, and Joel Sherrill

Application logic

File interface | iiiacesaaaaaanans
Libbsd network
filesystems
Libnetworking
filesystems

R

S YAFFS2... ! b P 1
080§ s (External JFFS2 i RFS | | DOSFS ! | DEVFS !
& library) : b 1

Buffer, Cache,
Schedulers

Device drivers

Figure 1: Layered File System Architecture in RTEMS.

layered file system architecture as adopted by RTEMS. See Bloom
and Sherrill [1] for a brief introduction to the RTEMS kernel.

2.1 Networking and libbsd Support

RTEMS has support for three distinct networking stacks to support
network file systems and network file type objects. The most mature
of these stacks is the 1ibbsd stack, which aims to track the FreeBSD
development head’s networking stack and selected device drivers.
The other two stacks are IwIP and the legacy libnetworking,
which is a clone-and-own copy of an old FreeBSD networking stack.
The 1ibbsd stack is maintained as a library in a separate repository
that can be combined with RTEMS during compile-time. In order to
make 1ibbsd possible, some of the FreeBSD kernel interfaces have
been re-implemented in RTEMS. The end result is that FreeBSD
support for device auto-configuration, the network stack including
IPv6 and IPsec, the USB stack, and the SD/MMC card stack are all
available for use in RTEMS-based applications.

2.2 File System Organization

As shown in Figure 1, RTEMS follows a traditional layered architec-
ture that forms a hierarchy consisting of the file API, the logical file
system, a virtual filesystem switch (VES), the physical file systems,
a block cache and buffer layer, and finally the device drivers that ac-
cess the storage media. In the following we briefly describe each of
the components of the overall file system hierarchical architecture
as they relate to RTEMS.

2.2.1 File APIs. The ubiquitous file interface provides a consistent
and meaningful view of data to application logic. Two basic file
interfaces are supported by RTEMS. The first is the POSIX/libc
file, available through both the native and 1ibbsd stacks, that pro-
vides support for POSIX and C/C++ applications, as well as other
languages that are compatible with either POSIX or libc. Second
are the networking file objects, which include pipes and sockets
compatible with BSD network file types.

2.2.2 Logical File System. The logical file system is the view of
file-based data that is provided across the interface between user
applications/libraries and kernel code. Access to the logical file
system is therefore part of the system call kernel interface and
is highly dependent on kernel design. This layer maintains state
associated with user space, such as the system- and process-open
files and process file descriptors. It is at this layer that the kernel
begins the translation of the application’s file requests to the phys-
ical storage behind that file by way of path evaluation, directory
traversal, access control permission enforcement, and translating
file names into kernel data structures.

The logical file system in RTEMS is implemented as part of the
cpukit/libcsupport code base. rtems_libio_iops is the table
of open files, and rtems_filesystem_location_info_t relates
paths to mountpoints. rtems_filesystem_eval_path_generic
function parses a path and traverses the filesystem, and file permis-
sions are enforced by rtems_filesystem_check_access.

2.2.3 Virtual Filesystem Switch (VFS). The VFS layer is a stable
kernel interface between the logical file system that userspace sees
and the various file system implementations that manage mounted
storage media. VFS is an object-oriented approach that simplifies
portable file system implementation.

Most of the VFS in RTEMS is accessed through the libio.h file.
The libio defines the rtems_filesystem_mount_table linked list
of mounted filesystems, which is analogous to a superblock in the
Linux VFS. The rtems_filesystem_operations_table is the set
of functions called on a specific filesystem, thus it is approximately
a combination of the superblock, inode, and dentry ops tables in
Linux. The rtems_filesystem_file_handlers_r function table
is basically the file_operations table of Linux’ VFS.

2.2.4 Physical File Systems. Often simply referred to as the File
System Implementations, the Physical File Systems are the software
components that control use of a physical storage media. For non-
volatile storage, this layer makes use of the storage media itself
to store a persistent subset of its data. This layer includes a wide
variety of file system implementations, and is the layer most often
associated with file systems by name, such as ext3 or FAT. The
physical file system code translates access requests to the physical
address space of the storage media, and manages the space allocated
to the file system on the storage device.

The physical file systems available in RTEMS address storage
requirements for a variety of media, including memory, block, flash,
and network devices. Two file systems are explicitly designed to
work from a heap memory region: In Memory File System (IMFS)
and Mini In Memory File System (Mini-IMFS). Typically, these
file systems provide a small, memory-resident root file system to
facilitate mounting other file systems and to ensure a file system
is available even if storage devices are not connected. Mini-IMFS
is a stripped-down version of IMFS aiming toward lower memory
overhead. The two primary block device file systems in RTEMS are
DOSFS and the RTEMS File System (RFS). DOSES is compatible with
FAT12, FAT16, and FAT32. RES is a customized file system aiming
toward low overhead and stability for extended use in long-lived
embedded systems. RTEMS includes a stable port of JFFSv2 with
journaling support. YAFFS2 is also available, but this file system
imposes a GPL or commercial license to remove the copyleft so it

Comparison of File Systems in RTEMS

Table 1: Feature Comparison of RTEMS File Systems. The
two GPLv2 licenses have either link-time exceptions or com-
mercial versions available.

Name Type License
IMFS RAM RTEMS
Mini-IMFS | RAM RTEMS
DOSFS Block RTEMS
RFS Block RTEMS Predictable, non-power of 2
JFFSv2 Flash GPLv2* Log structured, NOR
YAFFS Flash GPLv2* Log structured, NAND/NOR

Key Characteristic(s)
POSIX features, RAM based
Reduced footprint IMFS
Focus on compatibility

is not suitable for all users and is not directly integrated with the
RTEMS code base. NFSv2 and TFTP/FTP file systems are available
with suitable networking stack support.

2.2.5 Block Buffers and Cache. Block file systems and block de-
vices interact through the libblock cache. This cache improves
block I/O throughput using multi-threaded readers/writers using
typically a dedicated worker thread per block device to coordinate
and synchronize the physical access, while multiple threads may
allow reads and writes to pend in parallel. A special feature of
this cache is the use of varying block sizes, which can improve
memory utilization compared with fixed block sizes. The block
cache interfaces with device drivers using read, write, and control
commands.

2.2.6 Device Drivers. RTEMS has a hodge-podge collection of de-
vice drivers without any consistent or uniform device driver frame-
work. Over time, useful frameworks from other operating systems
have been ported to RTEMS so that the drivers may be reused. Such
frameworks include the 1ibbsd as a coarse-grained framework to
support many FreeBSD drivers, and the I2C/SPI framework that
provides a Linux-compatible APL

3 COMPARISON OF RTEMS FILE SYSTEMS

RTEMS has significant support for myriad file systems which forms
an infrastructure to support different functionalities such as mount-
able file systems, hard and softlinks to files and directories to access
them quickly. The filesystems support RAM, non-volatile memory,
physical disks, and network storage. RTEMS has POSIX compliant
APIs which support encourage application portability. Robustly
implemented file systems can use structures able to adapt to con-
temporary data strorage devices. Internally, RTEMS device drivers
follow a traditional API interface based on initialize(), open(), read(),
write(), and ioctl() interfaces. The RTEMS file system and system
call interfaces are layered on top of the pluggable device driver in-
terface. Prominent features of different non-networked file systems
are discussed in following sections. Specifically not discussed are
the RTEMS Network File System (NFS), FTP File System (FTPFS),
and TFTP File System (TFTPFS).

3.1 IMFS: In Memory File System

The In-Memory File System (IMFS) was the first file system im-
plemented for RTEMS. It supports the complete complement of
POSIX file system features including files, directories, device nodes,
and pipes. This was a critical design consideration as the IMFS was

EWiLi’18, 4 October 2018, Torino, Italy

first used to debug the file system stack through the C Library and
System Call interfaces. A key characteristic of this file system is
that disk blocks are obtained from dynamically allocated memory
(e.g., via malloc()). Unless configured to have no file system sup-
port, an instance of the IMFS is created during RTEMS initialization
for use as the root file system. An interesting feature is that the
file contents for an IMFS instance can be populated from an un-
compressed tar file located in read-only memory (ROM). Until the
contents of a file is modified, it will be accessed from ROM. This
provides an effective way to have a file system with static content
without consuming RAM. Associated with each IMFS entity in-
cluding mounted file systems is a jnode. A jnode instance has all
necessary information available in struct IMFS_jnode_tt such
as user id, group id, when was file last accessed, modified or status
changed. Identification of every file system node can be done with
rtems_filesystem_location_info_t.

3.2 Mini-IMFS: Mini In Memory File System

The Mini-IMFS is a reduced functionality variation of the IMFS. It
does not support symbolic links, mounting/unmounting, or chang-
ing the group/owner of a file. This is useful to save memory for
applications which do not require the full functionality of the IMFS.

3.3 DOSFS: DOS or FAT File System

The FAT file system was the first non-volatile storage block-based
file system to be supported by RTEMS. It currently supports FAT12,
FAT16, and FAT32 formats including long file name (LFN) support.
RTEMS includes both a command line and programmatic interface
to format FAT file system instances. This file system implementation
has been deployed in data logging systems and effort has been
invested to optimize it to meet the requirements of these systems.

3.4 RFS: RTEMS File System

The RTEMS File System (RFS) is a full featured file system with
POSIX semantics designed to meet requirements for predictable
memory usage and performance. It is a block-based file system
and is layered on top of the RTEMS Block Driver Interface and
thus supports a variety of storage media. It also has the unique
feature of supporting block sizes which are not powers of two. This
feature meets the requirement of space based applications which
use non-volatite storage with error-correcting codes (ECC). Being
initially developed for use in space based applications, it is designed
to accomodate CPUs with low clock speeds and relatively small
amounts of RAM (e.g. 20 Mhz and 2MB).

3.5 JFFS2: Journalling Flash File System v2

The Journaling Flash File System (JFFS) is a log-structured file
system that supports NAND and NOR flash devices. It provides a
file system directly on the flash memory rather than interfacing
through a block device interface. It includes a garbage collector
which can perform wear-leveling. JFFS2 also supports compression
of data stored thus allowing a trade-off between storage used and
execution time. However, some data does not lend itself to further
compression (e.g. MP3 or JPEG). Having this as a configurable
feature allows the designer to tailor the solution for the system.

EWiLi’18, 4 October 2018, Torino, Italy Udit Kumar Agarwal, Vara Punit Ashokbhai, Gedare Bloom, Christian Mauderer, and Joel Sherrill

3.6 YAFFS: Yet Another Flash File System

The Yet Another Flash File System (YAFFES) is a log-structured file
system which was designed with data integrity and performance
as goals. It supports NAND and NOR flash devices and operates
directly on the flash memory. YAFFS is designed to spread writes
across the disk serially from the list of erased blocks. This tends
to naturally perform wear-leveling. YAFFS is dual-licensed and
a license for commercial use must be obtained to use it without
copyleft obligations.

4 RTEMS FILE SYSTEM BENCHMARKING

The platform used for benchmarking is BeagleBone Black rev. B6
along with RTEMS version 5 pre-release.! In the following we
introduce the benchmarking procedure used before presenting the
impact of different read/write methods by tuning ioengine and
block size on specific file systems such as RFS, IMFS, and DOS.
Further, RTEMS supported flash file systems are contrasted against
each other, and we present the effect of various tuning parameters
on the bandwidth that was recorded. We end this section with a
statistical comparison of DOSFS and RFS on RAM-disk and different
storage media.

4.1 Benchmarking process

The benchmark used was Flexible I/O (FIO) tester rev. 3.6 which has
been ported to RTEMS.? Build instructions for RTEMS are avail-
able3. FIO provides what it refers to as ioengines that implement
multiple file access methodologies. An ioengine is selected as part
of configuring FIO for a particular run. Available ioengines include:
sync, which uses native read(), write() and Iseek() calls for read-
ing, writing or positioning a file; psync which uses pread() and
pwrite(); and vsync which uses readv() and writev() system calls.
Unless stated, by default the sync ioengine was used for bench-
marking. The benchmarking process was straightforward: setup
the benchmarking environment first and FIO’s job configuration
settings. Benchmarking environment requires setting up the de-
sired file system along with the target device, which in our case was
mostly done with RAM-disk. All tests, including those for the flash
file systems, were performed on a RAM-disk with a fixed device
size along with constant CPU stack and cache size. To be precise,
libblock cache size used was 10 KiB with 1 KiB as individual lib-
block buffer size and CPU stack minimum size was 256 KiB. As we
expect users will tend to use default values, we present the results
obtained with defaults (e.g., block size) as the primary results while
we show variation due to changing defaults as secondary results.
For consistency and reproducibility of the results, we have made
the benchmark test configuration available online.*

Evaluating file system performance on a RAM disk has two
advantages: First, typical storage media like SD-cards and USB
storage sticks are short lived consumer articles that may reduce
reproducibility. Second, flash based media performance tends to
degrade over time so one would need to implement a mechanism
to check whether the medium is still performant while running

! commit id: cf811a4eb2 and RTEMS Source Builder commit id: 25f4db09c8
Zsource at https://github.com/madaari/fio/tree/paper
3uditagarwal.in/index.php/2018/08/02/benchmarking-rtems-filesystems-using-fio
“https://github.com/madaari/fio/blob/paper/os/rtems/rtems-init.c

Effect of ioengine on bandwidth for RFS

FE 10engine = sync
100 %% 10engine = psync
N\ 10engine = vsync

Bandwidth(MBytes/sec)
o
o

Read Write Random Read Random Write
1/0 type

Figure 2: Effect of IO0engine on bandwidth for RFS.

Effect of 10 block size on bandwidth for RFS

- s = 5128
= bs = 1K
. N bs = 4KiB
O X A bs = 16KiB
g KKK /Z /s bs=64KiB
55
&£ X8
7 5 /
] X
2 KL
> oateld
@ %
855
= 05
< KL
= 558
=} R85
kel %
2 S8
2 oo /
255
o 525 /
c 0N
c 08
@ 355
08
e
XKL
55
RS

a

Random Rea

Sequential Read
1/O direction

Figure 3: Effect of 10 block size on bandwidth for RFS.

benchmarks. A RAM disk does not suffer from these two problems,
and it can yield useful results to inform file system designers a long
as the same timing settings are used consistently with the RAM as
would the target media.

4.2 RFS

Figure 2 shows better performance of RFS with the sync ioengine,
which indicates that RTEMS native read()/write() calls are faster
then the POSIX implementation of pread/readv or pwrite/writev.
This is not surprising as the default implementation of readv/writev
is a loop which makes multiple calls to read/write. Read and write
bandwidth are similar because of using a RAM-disk. The difference
in sequential read and random read is due to the finite libblock cache
size. Figure 3 shows correlation between the IO block size and the
bandwidth. At smaller block sizes, a gradual increase in block size
significantly reduces the number of read/write operations, thus a
large increase in bandwidth. At larger block sizes, the latter factor
gets dominated and time to transfer a block of data compensates
for the change in the number of IO operations.

4.3 DOSFS

Similar to RFS, Figure 4 shows the variance of bandwidth with IO
block sizes for DOSFS. Speed here is well below the mark where
the second factor (i.e., the time required to complete an IO request)
dominates, and thus bandwidth increases with IO block size. Tests
for DOSFS were all performed with block size 512B (default) and

Comparison of File Systems in RTEMS

Effect of 10 block size on bandwidth for DOSFS

—
N
o

Bl Block size = 512B
mza Block size = 1KiB
@ Block size = 4KiB
X2 Block size = 16KiB
777 Block size = 64KiB

-
15}
S}

3
o

Bandwidth(MBytes/sec)
B (=)}
S 3

7

2620203
Sequential Read/Write Random Read/Write
1/0 direction

N\

o

Figure 4: Effect of 10 block size on bandwidth for DOSFS.

IMFS performance test

120
B Block size = 16B
— 1001 WA Block s!ze =128B
e N Block size = 512B
2
$ 804
=
>
o
= 60
r= —
=
e}
< 40] \i ‘T
o
c
8 201 \ k
0,

Read Write
1/0 direction

Figure 5: Effect of IO block size on bandwidth for IMFS.

thus that explains lower bandwidth than from RFS (which uses 1
KiB block sizes as default).

4.4 IMFS and Mini-IMFS

Performance for IMFS and Mini-IMFS are similar, which is expected
since Mini-IMFS is just IMFS minus some functionality to have
a low memory overhead. Figure 5 shows the IMFS performance
statistics with a file system block size up to 512B. IMFS uses an
i-node structure based on that of the original UNIX file systems. So
as the block size goes up, one can have more and more blocks in
the maximum file size. Further, increasing the block size (default:
128B) leads to more memory wastage due to internal fragmentation.
Thus, depending on the application, one has to either compromise
the maximum file size or the amount of memory wasted.

4.5 Contrasting flash file systems

Benchmarking of flash file systems was performed with file system
block size of 4 KiB for both file systems, which is shown in Figure 6.
The flash device layer was simulated with a RAM-disk, primarily to
ease comparison with the RFS and FATFS that were benchmarked
using a RAM-disk. Using a RAM-disk also eliminated any limits or
variances introduced by the flash device driver, flash translation
layer, or hardware itself. Here, YAFFS2 performs better then JFFS2
due to more efficient garbage collection along with no data compres-
sion. JFFS2 on the other hand supports data compression by default,
and is thus a better fit to small partitions of NAND especially if
there are text-only files. However, data does not always compress

EWiLi’18, 4 October 2018, Torino, Italy

Performance statistics of flash file systems

—— YAFFS2 read stats
—— YAFFS2 write stats
== JFF5v2 read stats

JFFSV2 write stats

JFF5U2 W/O compression read
—+ JFFSu2 W/O compression write

140

=
N
o

=
o
o

o]
o

(o))
o

Bandwidth(MBytes/sec)

B
o
v

N
(=]
1
\
\

o

512 1024 4096 16384

10 block size in Bytes

Figure 6: Performance statistics of flash file systems.

Effect of cache size on filesystems

— IMFS

1.0+ RFS

0.8+

0.6

0.4+

Normalized bandwidth

0.2 4

0.0
10 256 512 1024

Cache size in KiB

Figure 7: Effect of cache size on bandwidth of file systems.

very well, and enabling compression for some data formats hurts
performance without gaining storage space. For example, an em-
bedded web server containing a lot of already compressed images
will not benefit from compression, but a system that writes sensor
log files will use the available space a lot more effectively at the
expense of spending CPU time for compression. Disabling com-
pression has a noticeable benefit to JFFS2 write performance, and
modest improvement to read throughput. It is possible these results
may differ with a FLASH disk, as the computational overhead of
compression could be hidden by moderately longer access times
with respect to the RAM disk.

4.6 Effect of tuning parameters

The test in Figure 7 was performed with file system block size
constant and IO block size equal to 4 KiB using IMFS and RFS. Here,
normalized bandwidth is used to put focus more on how bandwidth
changes rather than individual differences in bandwidth for both
file systems. Normalized bandwidth was calculated by dividing the
individual bandwidths with bandwidth at cache size 10 KiB for
both file systems. IMFS uses standard heap allocator for allocating
files (by malloc) and thus it does not have any dependency on
libblock and cache. RFS on the other hand, is sensitive to block
cache parameters. The initial drop in bandwidth is suspected to
be due to overwhelming of L1 and L2 cache and thus hitting a 20
cycle memory access miss penalty. The size of L1 cache in this case
is 32 KiB and that of L2 is 256 KiB on BeagleBone Black. Further

EWiLi’18, 4 October 2018, Torino, Italy Udit Kumar Agarwal, Vara Punit Ashokbhai, Gedare Bloom, Christian Mauderer, and Joel Sherrill

Performance of RFS and DOSFS on storage media

B Sequential Read
@ Sequential Write

N
s

N
o

Bandwidth(MBytes/sec)
- e
o w

o
wn

o

DOSFS RFS DOSFS RFS
SHCI card USB mass storage
1/O direction

Figure 8: Performance of RFS and DOSFS on storage media.

increasing the libblock cache size results in an increased bandwidth
as the number of cache misses decreases significantly.

The size of each file within a file system can be expressed as an
integral multiple of file system block size. IO bandwidth is almost
linearly proportional to file system block size (at least at smaller
block sizes). Having large block sizes for a file system can lead
to storage waste due to internal fragmentation when allocating
smaller file sizes. A system with a small number of large files can
efficiently use large block sizes, while a system with a large number
of small files would more efficiently use the storage with a smaller
block size.

Figure 8 shows performance of RFS and DOSFS with file system
block size in both the cases to be same and equal to 512B. SDHC
card used was a 16 GiB variant made by Lexar and USB stick was
of 4 GiB by an unknown OEM. In determining the performance
of a file system on a storage media, some factors are independent
of the file system such as device parameters (e.g., USB/SDHC card
manufacturer, flash implementation, partition size, etc.) and device
driver implementation (e.g., version/source of device driver, effi-
ciency of driver, etc.). Thus, results in Figure 7 should not be used
to contrast RFS/DOSES performance across different storage media
but only for the given platform.

5 RELATED WORK

The most closely related work in characterizing and comparing per-
formance of file systems in embedded operating systems focuses on
flash file systems [2-8]. Although flash disks are the dominant form
of secondary storage in embedded systems, non-flash file systems
are also widely used and deserve attention in RTOS design, imple-
mentation, and optimization. We are not aware of any attempts to
characterize the performance of file systems across the breadth of
an RTOS. This is most likely to be performed as part of file system
selection and tuning for a specific embedded system deployment.

6 CONCLUSION

In this paper, we reviewed the design and implementation of the file
system stacks available in the RTEMS open-source RTOS, compared
the features of the file system implementations qualitatively, and
presented quantitative benchmarking results of commonly used
RTEMS file systems for RAM disk file management. Future work
can further characterize the performance of RTEMS file systems

using alternate metrics, benchmarks, storage devices, and microcon-
troller platforms. The outcomes of performance characterization
should be used to validate that file system design goals are met, and
to guide implementation tuning to optimize for design constraints.
This work was done on a single target board and it appeared that
CPU cache and bus bandwidth were limiting factors. It is desirable
to define a benchmarking methodology which would allow embed-
ded systems designers to evaluate the impact of target hardware,
file system, and block size selection for their deployment. We are
also interested in determining fair methods to compare different im-
plementations of the same physical file system, for example FAT32
or JFFSv2, across multiple operating systems.

ACKNOWLEDGMENTS

The authors thank the Google Summer of Code Program for sup-
porting the students who have worked on this effort. Gedare Bloom
is supported in part by the National Science Foundation under Grant
No. CNS-1646317 and the U.S. Department of Homeland Security
under Grant Award Number 2017-ST-062-000003.

REFERENCES

[1] Gedare Bloom and Joel Sherrill. 2014. Scheduling and Thread Management with
RTEMS. SIGBED Rev. 11, 1 (Feb. 2014), 20-25. DOI:http://dx.doi.org/10.1145/
2597457.2597459

[2] Seung-Ho Lim, Sung-Hoon Baek, Joo-Young Hwang, and Kyu-Ho Park. 2006.
Write Back Routine for JFFS2 Efficient I/O. In Proceedings of the 2006 International
Conference on Embedded and Ubiquitous Computing (EUC’06). Springer-Verlag,
Berlin, Heidelberg, 795-804. DOI :http://dx.doi.org/10.1007/11802167_80

[3] Pierre Olivier, Jalil Boukhobza, and Eric Senn. 2012. Micro-benchmarking Flash
Memory File-System Wear Leveling and Garbage Collection: A Focus on Ini-
tial State Impact. In Proceedings of the 2012 IEEE 15th International Conference
on Computational Science and Engineering (CSE ’12). IEEE Computer Society,
Washington, DC, USA, 437-444. DOI :http://dx.doi.org/10.1109/ICCSE.2012.67

[4] Pierre Olivier, Jalil Boukhobza, and Eric Senn. 2012. On Benchmarking Embedded
Linux Flash File Systems. SIGBED Rev. 9, 2 (June 2012), 43-47. DOI:http://dx.doi.
org/10.1145/2318836.2318844

[5] Pierre Olivier, Jalil Boukhobza, and Eric Senn. 2014. Flashmon V2: Monitoring
Raw NAND Flash Memory I/O Requests on Embedded Linux. SIGBED Rev. 11, 1
(Feb. 2014), 38—43. DOI:http://dx.doi.org/10.1145/2597457.2597462

[6] Pierre Olivier, Jalil Boukhobza, and Eric Senn. 2015. Revisiting Read-ahead
Efficiency for Raw NAND Flash Storage in Embedded Linux. SIGBED Rev. 11, 4
(Jan. 2015), 43-48. DOI:http://dx.doi.org/10.1145/2724942.2724949

[7] Pierre Olivier, Jalil Boukhobza, Eric Senn, and Hamza Ouarnoughi. 2016. A

Methodology for Estimating Performance and Power Consumption of Embedded

Flash File Systems. ACM Trans. Embed. Comput. Syst. 15, 4 (Aug. 2016), 79:1-79:25.

DOI : http://dx.doi.org/10.1145/2903139

Pierre Olivier, Jalil Boukhobza, Mathieu Soula, Michelle Le Grand, Ismat Chaib

Draa, and Eric Senn. 2014. A Tracing Toolset for Embedded Linux Flash File Sys-

tem. In Proceedings of the 8th International Conference on Performance Evaluation

Methodologies and Tools (VALUETOOLS ’14). ICST (Institute for Computer Sci-

ences, Social-Informatics and Telecommunications Engineering), ICST, Brussels,

Belgium, Belgium, 153-158. DOI :http://dx.doi.org/10.4108/icst.valuetools.2014.

258179

—
&

http://dx.doi.org/10.1145/2597457.2597459
http://dx.doi.org/10.1145/2597457.2597459
http://dx.doi.org/10.1007/11802167_80
http://dx.doi.org/10.1109/ICCSE.2012.67
http://dx.doi.org/10.1145/2318836.2318844
http://dx.doi.org/10.1145/2318836.2318844
http://dx.doi.org/10.1145/2597457.2597462
http://dx.doi.org/10.1145/2724942.2724949
http://dx.doi.org/10.1145/2903139
http://dx.doi.org/10.4108/icst.valuetools.2014.258179
http://dx.doi.org/10.4108/icst.valuetools.2014.258179

	Abstract
	1 Introduction
	2 Overview of RTEMS File Systems
	2.1 Networking and libbsd Support
	2.2 File System Organization

	3 Comparison of RTEMS File Systems
	3.1 IMFS: In Memory File System
	3.2 Mini-IMFS: Mini In Memory File System
	3.3 DOSFS: DOS or FAT File System
	3.4 RFS: RTEMS File System
	3.5 JFFS2: Journalling Flash File System v2
	3.6 YAFFS: Yet Another Flash File System

	4 RTEMS File System Benchmarking
	4.1 Benchmarking process
	4.2 RFS
	4.3 DOSFS
	4.4 IMFS and Mini-IMFS
	4.5 Contrasting flash file systems
	4.6 Effect of tuning parameters

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

