
Modular Network Stacks in the Real-Time
Executive for Multiprocessor Systems

Vijay Banerjee, Sena Hounsinou, Harrison Gerber, Gedare Bloom
Department of Computer Science

University of Colorado Colorado Springs
Colorado Springs, Colorado, USA

(vbanerje, shoueto, hgerber, gbloom)@uccs.edu

Abstract—Real-Time Executive for Multiprocessor Systems
(RTEMS) is a real-time operating system used by the Exper-
imental Physics and Industrial Control System (EPICS) open-
source software for high-precision scientific instruments such
as particle accelerators and telescopes. EPICS relies on the
networking capabilities of RTEMS for microcontrollers that
need to meet real-time constraints. However, the networking
available in RTEMS either lacks the necessary drivers to be
fully operational or lacks security features required in modern
networks. In this paper, we introduce a modular networking
architecture for RTEMS by separating the network software
implementation and device drivers from the RTEMS kernel to
provide them as a static library for applications to use. This
networking-as-a-library concept provides application developers
with better capabilities to select the network features needed for
their target application and to keep their networking software
updated and secure.

Index Terms—RTEMS, EPICS, TCP/IP, Networking, lwIP,
Modular Networking Stack, FreeBSD, libBSD

I. INTRODUCTION

The US Department of Homeland Security (DHS) Cyber-
security and Infrastructure Security Agency (CISA) defines
over a dozen Critical Infrastructure sectors. Each sector re-
groups a set of systems and assets that support communities.
For instance, the Information Technology (IT) sector com-
prises systems that support information-based society. This
sector also supports other critical infrastructure sectors because
it encompasses the industrial control systems (ICSs) that
monitor processes across cyber-physical infrastructures. As
such, ICSs play a vital role across domains like healthcare,
manufacturing, production, and research and development.
These systems rely on the security of the networks that connect
their components, which sometimes are located in different
geographic areas. Recent events such as the Colonial Pipeline
cyberattack [1] have shown that a single security breach can
impact an entire region of the United States.

The Experimental Physics and Industrial Control System
(EPICS) is an open-source scientific cyberinfrastructure that
is used in particle physics research and development. Speci-
fically, EPICS enables creating distributed real-time control
systems for scientific instruments such as particle accelera-
tors, telescopes, and other large scientific experiments. As in
other ICSs, secure communication between different nodes is

This work is supported by NSF OAC-2001789 and CO State Bill 18-086.

important to EPICS overall security posture. EPICS depends
on the networking implementations provided by the OS. One
of the OSs used by EPICS is the Real-Time Executive for
Multiprocessor Systems (RTEMS) [2].

As a POSIX-compliant real-time OS (RTOS), RTEMS can
support multiple network stacks. A network stack is the
implementation of the set of networking protocols that handle
the transfer of data across connected devices. The network
stack, sometimes called the TCP/IP stack, follows a four-layer
model [3] where the application is at the top layer and the
device specific network drivers are at the bottom layer, which
interfaces the hardware, network protocols such as the Internet
Protocol (IP), and the OS.

Traditionally, the network stack implementation is a part of
an OS that handles the networking tasks and the respective
drivers for a network interface controller (NIC). The TCP/IP
stack implementation of RTEMS historically also resided in
the kernel along with the user-level application programming
interface (API) declarations that RTEMS provides through the
Newlib C library.

Prior to our work, the RTEMS networking stack imple-
mentation, which we now call the legacy stack, faced the
following challenges: first, the legacy stack lacked several
features that have become fundamental in modern networks.
For example, the legacy stack is based on an earlier, less
secure version of the Internet Protocol (IPv4), which is no
longer suitable for many systems supported by RTEMS. This
is particularly important for US federal agencies and research
centers (including national laboratories using EPICS), which
have been mandated to transition to a more secure network
by 2023 [4]. However, it is challenging to update the legacy
stack because it is integrated in the RTEMS kernel source
code. Therefore, updating the network stack requires updating
the entire RTEMS kernel. Although a newer FreeBSD-based
stack known as the libBSD stack is equipped with more
features (including security-related ones), it lacks drivers for
commonly used EPICS microcontrollers. Moreover, the size of
the applications linked to the libBSD stack is unsuitable for
some memory-constrained hardware supported by RTEMS.

In this work, we separate the legacy stack in its own module
outside RTEMS to facilitate switching the network stack
without requiring heavy changes to user applications or the
RTEMS kernel. This modularization uses extant Newlib header

files to allow RTEMS users to build and link their applications
to their network stack of choice, much like they can select
among several different scheduling algorithms depending on
the application needs [5]. This modular Networking-as-a-
Library framework also provides users with an option to build
their own implementation of a network stack for RTEMS
instead of depending on the legacy implementation provided
by the OS. This approach provides two major benefits to
EPICS. First, applications are not restricted in terms of choice
of networking features, because they can link to a different
network library without changing much of the code. Second,
the network library provides an opportunity to upgrade to more
secure, modern network stacks.

Our contributions are summarized as follows:
• We create a standalone network stack for the legacy

networking implementation that was a part of RTEMS.
• We create a modular network stack library for lwIP

TCP/IP stack.
• We develop a net-services submodule that consists of the

common network services that any networking module
can use.

• We demonstrate the working of a user application with
the modular network stack to show that the modular
approach does not change the application layer. Hence,
our approach does not burden existing users with the need
to change their application.

• We evaluate the stacks in terms of Round Trip Time
(RTT) to provide insights on performance implications
of each network stack.

• We compare the size of the binary images from each of
the stack and present the rtems-lwIP stack as suitable
alternative to legacy network stack.

To the best of our knowledge, these contributions make
RTEMS the first full fledged RTOS that allows the flexibility
in choosing among multiple networking stacks. This flexibility
makes RTEMS one of the most adaptable RTOS for real-
time system developers by providing them the option to
select network features that are specifically targeted toward
their needs, hence enabling tradeoffs in performance (memory
consumption, bandwidth, latency) and security.

The remainder of the paper is as follows: we next provide
background about RTEMS and its network stacks in Section II.
Then we describe the modular network stack framework in
Section III. In Section IV we provide an analysis of the
network stacks, and in Section V we discuss the current work
related to modular network stacks. Finally, we conclude the
paper in Section VI where we also briefly discuss our ongoing
and future efforts.

II. BACKGROUND

RTEMS is an open source real-time OS. As such, systems
built using RTEMS have both temporal and logical correctness
requirements. In addition, because the RTOS supports various
size target platforms across different architectures (e.g., ARM,
Motorola 6800, and SPARC), developers have endeavored to
use code that can suit embedded and resource-constrained

Target Hardware

Supercore Board Support Package

Time
Management

BSP
LibChip

LibBSP
Shared

Board
SpecificLibCPUMemory

AllocationScheduler

Architecture
Port Threads Communications

& Synchronization

ShellPerformance
Monitoring APIPOSIX APIClassic APISAPI

BSD TCP/IP STACK

ADD-ON
LIBRARIES

GRAPHIC
USER

INTERFACES

REMOTE
DEBUGGINGADA95

POSIX
COMPLIANT
FILESYSTEM

DHCP

telnetdRPC/XDRCORBA

httpdftpdtftpSNMP

PPPBOOTPICMP

Fig. 1. RTEMS High Level Architecture

devices. In the early years of RTEMS, such code has been
ported from the lightweight C library Newlib [6], which is
another open source project focused on providing POSIX-
compliant cross-compiled software which is widely used in
embedded system projects. Specifically, RTEMS adopted sev-
eral enhancements provided by Newlib (e.g., floating point
support, and math library [7]) including header files [8] for
which RTEMS added its own implementation. Some of these
header files were used as a foundation for porting RTEMS
network stacks. We provide more explanation regarding this
in Section III.

The RTEMS kernel (depicted in Figure 1) is composed of
four main blocks: the Supercore, the board support package
(BSP), the application programming interface (API), and the
Services. The Supercore is the heart of the kernel. It provides
the real-time functionalities of the OS. As the name indicates,
the BSP is responsible for providing all the necessary sup-
port to integrate the different hardware targets supported by
RTEMS. The API block allows RTEMS users to access the
functionalities of the Supercore. RTEMS user-level services
range from enabling programming in multiple languages to ac-
cessing additional libraries, including the newly added RTEMS
network stack.

RTEMS provides a legacy implementation that is built into
the RTEMS kernel. This legacy stack has been ported from the
earlier versions of FreeBSD and has been a part of RTEMS
since the late 1990s. FreeBSD integrated DARPA’s TCP/IP
stack [3] in its early network stack implementation. The stack
generically regroups the OSI communication model into four
layers: the application layer of the stack (which combines
the session presentation and application layers of the OSI
reference model) transmit user application data to the transport
layer using sockets API. The transport layer is implemented
using TCP and UDP protocols over the IP (or Internet) layer.
The Network access layer (which integrates the data link

and physical layers of the OSI model) is the lowest layer
of the network stack. It handles the physical hardware and
protocols that are required to deliver the data across a physical
network. This handling is done through the device drivers in
RTEMS, which are responsible for initializing and operating
the embedded hardware’s NIC.

A network application uses the networking APIs, like the
socket API, to make system calls with the appropriate protocol
headers, which triggers the network drivers to send physical
signals to the hardware to carry out the requested action.
Traditionally, the networking implementation is a part of
an OS that handles the networking tasks and the respective
drivers for a NIC. The implementation also provides user-
level header files that contain the declarations for the user
APIs.In RTEMS the POSIX networking API signatures are
provided to the applications through the Newlib C library, and
the implementation of the TCP/IP stack along with the NIC
drivers, were a part of the RTEMS legacy stack.Although the
RTEMS legacy stack has been used by multiple targets for
a long time, it did not evolve at par with the developments
in the FreeBSD stack due to the following reasons: first,
making changes inside the kernel requires significant time
and expertise. Next, making any change to the legacy network
stack was essentially a change to the RTEMS kernel, which
involves a lot of regression testing.

In addition to Newlib, RTEMS also makes use of
FreeBSD’s code base, similar to several other well-known
OSs. FreeBSD [9] is also another open source OS, known for
its high performance in modern systems. A RTEMS repository
named rtems-libbsd, or the libBSD module was built by
RTEMS developers to port the required codes from FreeBSD,
which also includes the API implementation for the Newlib
header files. The libBSD module uses a git submodule to
track the upstream FreeBSD source code. LibBSD uses Python
scripts to port specific files from this FreeBSD submodule as
follows: first, a block of FreeBSD source code is imported
from the submodule. Then, the necessary files are copied
locally to the RTEMS-libBSD repository, and adapted to work
with RTEMS through the scripts which not only imports the
code, but also adds RTEMS specific header files to them, in
order to properly connect the FreeBSD drivers to the RTEMS
kernel. (We refer to this approach as the libBSD framework
in the remainder of the paper.)

In recent years, the RTEMS developers have used the
libBSD framework to import the FreeBSD’s TCP/IP stack,
providing the users with an option to use a modern and
secure FreeBSD network stack with their RTEMS applications.
The LibBSD, which uses the FreeBSD network stack, has a
complete IPv6 support along with robust security features [10].
The modern features present the libBSD stack as a great
upgrade option to a more modern stack. One caveat to having
libBSD as the only alternative to the legacy stack is that some
targets have very limited available memory and are not capable
of running the libBSD stack. Thus, we prepared an adapter
version of the lwIP [11] stack as an alternative to the libBSD.
lwIP is an independent project targeted towards embedded

systems with strict memory constraints. The features of lwIP
stack are comparable to that of libBSD but size and memory
requirements are much smaller than that of an application
linked with libBSD. Some of the important highlights of
the lwIP stack are the much required IPv6 support and the
support for IPSEC, which has been studied and added by other
independent projects [12].

In the following section, we present a modular network
stack approach that decreases the reliance on the legacy stack
and provides additional network stack options. This approach
also gives RTEMS users the ability to develop more suitable
network stacks without the need to modify the entire RTEMS
kernel.

III. MODULAR NETWORK STACKS

As stated in Section I, RTEMS users currently face the
following challenges related to the implementation of the
network stacks: (1) difficulty upgrading the legacy stack, (2)
inability to fully utilize each of the existing network stacks
(legacy and libBSD) because of a lack of appropriate drivers,
(3) lack of security support in the legacy stack. To address
the first challenge, we separated the components of the legacy
stack from the current RTEMS kernel into its own standalone
repository (see Section III-A).

To resolve (2), we have also separated the drivers from the
RTEMS kernel and added them as a part of the networking
module. In addition, we created a standalone submodule called
rtems-net-services, that can be added to any RTEMS network
stack to use networking services like the File Transfer Protocol
(FTP) and the Trivial FTP (TFTP). These services are available
for use by any network stack module (see Section III-D).

Moreover, as a part of our ongoing effort to expand support
for all the network stacks, we have streamlined the workflow
for adding support for a particular hardware platform. We
demonstrated the workflow and experiments on an uCdimm
ColdFire 5282 Microcontroller Unit (uC5282) which is widely
used by EPICS for RTEMS-based projects.

To address the third challenge, we look to use a network
stack implementation that provides modern security features
such as IPv6. The lwIP network stack implementation [11]
matches such a requirement. In addition to IPv6, lwIP can
also be combined with other independent protocol imple-
mentations like embedded IPSec [13]. lwIP in combination
with embedded IPSec has been evaluated with microkernel
OS [12], showing that lwIP can be robust and versatile in
adding security updates. Moreover, the lwIP network stack
is targeted towards embedded systems with strict memory
constraints. As such, we broadened the existing network stack
options by fully integrating a third network stack module
based on lwIP. The lwIP based networking stack, called, rtems-
lwip, will enable the users to choose the network stack that
provides the necessary security required for the application
(see Section III-C).

As a result, a new architecture is obtained for the network
stack library, as shown in Figure 2. In the following subsec-
tions, we describe how the stacks and the net-services module

libnetworking.a
+ BSP Networking Driver

API

SuperCore and BSP

Kernel

NewlibUser App API

libtelnetd.a
+ BSP Networking Driver

libbsd.a
+ BSP Networking Driver

Hardware

Fig. 2. RTEMS with Modular Network Architecture

were built to form the network stack library in further detail.
Table I shows a comparison of the features of the network
stacks.

TABLE I
COMPARING NETWORK STACK FEATURES

Feature LibBSD lwIP legacy
TCP X X X
UDP X X X
IPv4 X X X
IPv6 X X ×
IPSec X X ×

A. Legacy Networking Module

As stated in Section II, any significant modification to the
legacy stack requires extensive changes to the kernel. Thus,
to ensure that any update still satisfies and preserves the
current networking functionalities of RTEMS, and to make
the legacy stack available to the projects that are actively
using it (without any change in their project), we opted to
separate the legacy stack from the core of the OS in the form
of a static library (libnetworking.a). A static library allows
us to treat the existing network stack as a separate unit in
the OS, without requiring the code to be built along with the
OS kernel. Building the static library requires that we slightly
modify the current flow of the RTEMS Networking, and link
the libnetworking.a library to the user application directly. In
the new separate legacy stack, we followed the same directory
structure that was maintained in RTEMS, to make it easier
for the interested developers to maintain this stack separately,
without having to adapt to a totally different organization of
the same codebase.

The implementation of the legacy stack resided inside the
RTEMS cpukit/ directory while the BSP-specific drivers for

Build Context

libnetworking

Driver

net-services

libnetworking.a

libtelnetd.a
+ other net services libraries

app.exe

wscript

netlegacy.py

Waf Build
System

App Build
System

Link Phase

Configure Phase

Build Phase

Fig. 3. Modular Network Stacks Build Process

the legacy networking were located inside the bsps/ directory
for each of the hardware targets supported by RTEMS. To
proceed as described above, we created the rtems-net-legacy
repository [14] to hold the TCP/IP implementation file and
BSP drivers.

At compile time, the user application statically connects to
the libnetworking.a library which contains the legacy TCP/IP
implementation along with the BSP networking drivers used
by the legacy stack. To provide a simple and easy to integrate
system for developers, we opted for the Waf build system [15].
The Waf system was selected majorly because it is written
in a general purpose scripting language (Python). As such, a
developer only needs to focus on the functional code, saving
time on build system changes.

The new build process comprises three stages (Configu-
ration, Build, Link) as shown in Figure 3. During the Con-
figuration stage, Newlib provides the networking API header
files used by the user application. Then a Waf script (wscript)
collects the build context which consists of the target name,
toolchain executable locations, build flags, and other environ-
ment variables. In the Build phase, a script (netlegacy.py),
which we added to the repository, uses this build context
and collects the required files to build. The selection of files
is important in order to ensure that the correct driver gets
linked according to the build context. The linked driver gets
connected to the RTEMS kernel through the bsp.h header
file, which is a BSP-specific header file present in all the
RTEMS BSPs. This header contains the macro defines for
RTEMS BSP NETWORK DRIVER ATTACH which declares
the name of the driver attach function that the BSP will
call, in order to initialize the network interface. The driver
attach function is defined in the libnetworking.a library that
is generated from the waf build. This library is then linked to
the user application in the Link phase. Since the end product
from the Build phase is a separate C library, the user can use
their own build system to link to the library.

B. LibBSD Module

RTEMS uses this LibBSD framework to port the current
TCP/IP network stack from the FreeBSD sources, which
provides a full featured IPv6 [16] supported network stack.
To accommodate this BSD stack addition to RTEMS without
changing the RTEMS source code significantly, the TCP/IP
API header files required for the current BSD stack are
pushed into upstream Newlib repository under the directory
libc/sys/rtems/include/. Similar to the legacy networking pro-
cess, the LibBSD builds a static library libbsd.a from the
FreeBSD ported codes. This separate library is especially
interesting for the network stack, as the networking API
declarations are provided by Newlib while the implementation
is obtained from libBSD. Using this approach, any application
that makes use of the latest BSD networking can simply link
to libbsd.a.

C. liblwIP Module

The lwIP stack has been used in multiple embedded OS
projects, such as FreeRTOS and HelenOS. In the RTEMS com-
munity, some users have also individually developed RTEMS
drivers in order to support the lwIP TCP/IP stack for their
projects. For example, the “uLan protocol for RS-485 9-bit
network” project [17] has adapted the lwIP stack for RTEMS
along with a driver for their target board ARM based TMS570.
There are multiple such independent projects that are using the
lwIP TCP/IP stack, but developments made on these projects
are unavailable for an RTEMS user out of the box. To address
the issue of scattered lwIP drivers, and to provide an alternative
to the libbsd and legacy network stacks, we built a standalone
networking module for RTEMS that can act as a centralized
location for drivers, hardware abstraction layers (HAL), and
adaptations that were developed by independent projects to
use the lwIP stack with RTEMS.

The newly created rtems-lwip repository [18] also uses the
Waf build system and has the same modular structure as
the previous two stacks. We have also added the upstream
lwIP repository as a submodule to rtems-lwip. This submodule
tracks the upstream changes, making it easier to update to the
latest changes without having to start a whole new self-hosted
independent project. Along with our adaptation of the lwIP
stack, we have added drivers developed by Texas Instruments
for the ARM-based BeagleBone Black board to test the build
process.

D. Net-Services Submodule

To further push for modular options, we moved some of the
common net services (for example, tftpfs and telnetd) from the
RTEMS kernel into a separate repository designated rtems-
net-services that acts as a submodule to rtems-net-legacy.
This new submodule builds static libraries (such as libtftpfs.a
and libtelnetd.a for ftpfs and telnetd respectively) for the
networking services.

The creation of the rtems-net-services submodule demon-
strates that placing the RTEMS networking services in a
module is both effective and maintains usability and function

as it does not add any exra layer of build process for the user.
Users who rely on the RTEMS networking services can build
only the services they need, reducing executable size since
these services are no longer in the kernel.

IV. EVALUATION

In this section, we present three evaluations of the RTEMS
modular network stack framework presented in Section III.
In the first experiment (in Section IV-A), we show that the
modular networking framework does not require substantial
effort from the user. To do so, we demonstrated the building
of the the rtems-net-legacy module using the waf system.

In the second experiment (Section IV-B), we analyzed the
memory requirements to implement each of the three network
stacks (legacy, libBSD, lwIP). Specifically, we computed and
compared the size of the binaries of the same application
over the legacy and libBSD network stacks. This experiment
highlights the memory requirements between the stacks, and
shows the potential implications of switching from the legacy
stack to the rtems-libbsd stack.

In the final experiment (Section IV-C), we evaluated the
round trip times (RTT) of the rtems-libbsd and rtems-net-
legacy stacks Although the lwIP network stack is fully in-
tegrated and adapted to RTEMS, the driver support is limited
for an RTT analysis. Therefore, the lwIP stack has not been
used in this experiment.

For all three experiments, we have selected the uCdimm
Coldfire 5282 (uC5282) as our hardware target due to its wide
use in projects that deploy EPICS and RTEMS for safety-
critical applications. The uC5282 microcontroller module uses
the Motorola MCF5282 microcontroller, that has an integrated
10/100 Fast Ethernet Card. The uCdimm platform has an
on-board Synchronous Dynamic Random Access Memory of
16MB.

A. Building a Classic Application Using Net-Services

In this section we illustrate the process of building a
simple Round-Trip Time application using the legacy network
stack. The application building follows a two-step process as
described in section III-A. The network stack is configured
for the target hardware with the command shown in Figure 4,
then built using the ‘./waf‘ command.

Fig. 4. Command to configure and build rtems-net-legacy stack for uC5282

For rapid functionality testing of the network stacks on
uC5282, we have also provided QEMU emulator [19] support
for the uC5282 target. The current main branch of QEMU
does not have support for the target board so we refactored an
old patch [20] to make the board compatible with the current
QEMU. We will contribute this added support to QEMU
upstream.

Fig. 5. Round trip time comparison of the RTEMS network stacks

B. Size Comparison of Binary Images

To compare the sizes of the binary images of the three
network stacks, we used the same RTT application that we
built in the experiment in IV-A. We used the GNU objcpy
and size tools from the GNU toolchain for the m68k target,
to get the binary images of the executable linked to different
stacks, along with the size of text, data, and bss segments to
understand the memory usage of the apps in each network
stack.

Table II shows the results from the comparison of the size
of the generated binary images. The size difference between
the libbsd stack and other two stacks is significant. However,
the size difference between the lwIP stack and legacy stack
is much lower. The sizes of the .text segment (which in all
three cases represents the largest portion of the executable)
show that the libBSD brings in a much larger code, making
the executable much larger compared to the other two. The
.data segment shows a similar pattern where, interestingly, the
lwIP stack has the lowest value. This low value is due to the
optimized memory design of the lwIP stack which enables
it to run on targets as low as 512kB of memory. The .bss
segment in the lwIP stack can be reduced by allocating even
lower memory to the lwIP configuration, which can be done in
the rtems-lwIP repository through the lwipopts.h header. This
similarity in the size of the lwIP and legacy stack shows that
rtems-lwip can be a suitable alternative to the legacy stack for
memory-constrained targets.

TABLE II
SIZE COMPARISON OF BINARY IMAGES (ALL VALUES IN KB)

Network stack .text .data .bss Total Size
rtems-libbsd 1273 58.4 24 1,332
rtems-net-legacy 244.4 6 44 250.5
rtems-lwip 293 1.7 59 294

C. Round Trip Time Analysis

The RTT analysis shows the latency of the network, which
gives an idea about how much time it takes for a packet to
be transferred. A comparison of the RTT over the loopback
device shows the latency from the network stacks only, without

other factors that can affect the latency, like the wiring and
routing overhead due to the connection between devices.

To eliminate any performance difference due to different
hardware NIC speeds, we executed our application on the same
uC5282 hardware with each network stack. Since the uC5282
lacked a driver for rtems-libbsd, we added this support by
porting the legacy networking driver to the libbsd stack, which
we will contribute to the upstream rtems-libbsd repository.

To compare the RTT, we created a lightweight application
that sends a constant size packet over Internet Control Message
Protocol (ICMP) using raw sockets. The ICMP header size is
28B and we added a padding buffer of 56B to send a total of
84B. From the recorded data over 10 runs (see Figure 5), we
noted that the LibBSD stack has a latency overhead which can
be approximately double the average latency from the legacy
stack. This observation gives an interesting insight that switch-
ing an application to the FreeBSD-based libbsd stack will
have a performance overhead that can accumulate every time a
packet is sent or received. This overhead might become critical
in high precision industrial controllers where the latency of
the network can impact the validity of observed values. The
latency analysis reinforces the need for a lightweight network
stack alternative, which will be available to the user through
the rtems-lwip module.

V. RELATED WORK

A modular network stack approach has been previously
attempted on microkernel OSs like HelenOS [21] where each
part of the network stack works as a server module for the
microkernel proof-of-concept implementation. In contrast, our
work is based on a Monolithic Real-Time kernel, where we
have implemented the whole network stack as a separate
library module that gets linked into one whole executable
binary which is run on the target hardware.

NetBSD also uses a modular TCP/IP stack implementation
through a rump Kernel TCP/IP [22] that virtualizes kernel
functional units into clients. The clients can be one of three
types: local, microkernel or remote. The local client type
approach uses rump kernel as a library with rump API calls.
Instead of adding a new API layer, our approach provides
support for the common API calls for multiple stacks and an
application does not require any change in terms of includes
and API calls for working with an RTEMS networking library.

We have extended our unique approach to add a totally
independent networking stack lwIP, which has been used in
RTOSs before [23], [24], but our work differs in two ways.
First, the independent networking implementation has not
been integrated into the kernel in contrast with the FreeRTOS
TCP/IP implementation which is part of the kernel. Second,
the networking module provides a framework for adding and
modifying any layer of the network stack without affecting the
main kernel, which will pave the way for support on a wider
range of architectures and NICs.

VI. CONCLUSION AND FUTURE WORK

We have separated the legacy network stack from RTEMS
and created a standalone modular network stack as a separate

library that can be linked to user applications directly. We
have also created a networking library module for the lwIP
stack, which allows a platform to integrate independent lwIP
drivers for use with an RTEMS-based application. The new
modular networking architecture will facilitate switching from
one network stack to another and provides an easier route
to develop and use custom network stacks. Such stacks can
seamlessly fit as modules on top of RTEMS without changing
the kernel.

Our analysis of the three network stacks (legacy, libBSD,
and lwIP) provides insights on their features and performance.
The features of the libBSD and lwIP stacks are comparable
and much ahead of the RTEMS legacy stack. However, the
legacy stack shows lower latency when compared to the
libBSD stack. The analysis of memory requirements show that
for memory-constrained platforms the lwIP stack is a better
alternative to the legacy stack than the libBSD stack. Future
work can improve our benchmarking analysis by considering
the throughput from each stack along with evaluating dynamic
memory allocation for size-based comparisons among the
network stacks.

To further facilitate the development of multiple network
stacks without losing support for the common network ser-
vices, we have created a networking submodule that contains
popular network services including TFTP and telnetd. We have
thoroughly tested these services with RTEMS. This submodule
can be added to any networking stack thus providing a
common framework of services and testing. Future work can
add sample applications to the rtems-net-services submodule
that can be used by any network stack.

With our ongoing efforts, we intend to add more device
drivers to the lwIP stack to support a wider range of ar-
chitectures, and seek to understand how best to integrate it
with multicore targets [25]. We plan to utilize this modular
architecture to extend support for secure network services like
the Secure Shell Protocol (SSH), which is an important tool for
securing communications especially in industrial Internet-of-
Things (IIoT) [26] control systems. In addition, to facilitate the
development and adaptation of a network stack over a wider
range of targets, we plan to develop a library for networking
driver modules.

REFERENCES

[1] A. Hobbs, “The colonial pipeline hack: Exposing vulnerabilities in us
cybersecurity,” 2021.

[2] G. Bloom, J. Sherrill, T. Hu, and I. C. Bertolotti, Real-Time Systems
Development with RTEMS and Multicore Processors. CRC Press,
Nov. 2020. [Online]. Available: https://www.taylorfrancis.com/books/
9781351255790

[3] B. Beranek, “A history of the arpanet: the first decade,” Technical report,
1983.

[4] “Executive order on improving the nation’s
cybersecurity,” 2021. [Online]. Available: https:
//www.whitehouse.gov/briefing-room/presidential-actions/2021/05/
12/executive-order-on-improving-the-nations-cybersecurity/

[5] G. Bloom and J. Sherrill, “Scheduling and Thread Management with
RTEMS,” SIGBED Rev., vol. 11, no. 1, pp. 20–25, Feb. 2014. [Online].
Available: http://doi.acm.org/10.1145/2597457.2597459

[6] C. Vinschen and J. Johnston, “The newlib homepage,” 2018. [Online].
Available: http://sourceware.org/newlib

[7] W. Gatliff, “Porting and using newlib in embedded systems.”
[8] C. Johns, J. Sherrill, B. Gras, S. Huber, and G. Bloom, “FreeBSD

and RTEMS, UNIX in a Real-time Operating System,” FreeBSD
Journal, 2016. [Online]. Available: http://issue.freebsdfoundation.org/
publication/?i=330348&article id=2557258&view=articleBrowser

[9] M. K. McKusick, G. V. Neville-Neil, and R. N. Watson, The design and
implementation of the FreeBSD operating system. Pearson Education,
2014.

[10] “Freebsd security.” [Online]. Available: https://docs.freebsd.org/en/
books/handbook/security/

[11] A. Dunkels, “Design and implementation of the lwip tcp/ip stack,”
Swedish Institute of Computer Science, vol. 2, no. 77, 2001.

[12] M. Hamad and V. Prevelakis, “Implementation and performance evalu-
ation of embedded ipsec in microkernel os,” in 2015 World Symposium
on Computer Networks and Information Security (WSCNIS). IEEE,
2015, pp. 1–7.

[13] N. Schild and C. Scheuer, “Embedded ipsec, light weight ipsec imple-
mentation,” Diplome Thesis, Berne Univ, Switzerland, 2003.

[14] “Rtems net-legacy.” [Online]. Available: https://git.rtems.org/
rtems-net-legacy/

[15] [Online]. Available: https://waf.io/book/
[16] [Online]. Available: https://docs.freebsd.org/doc/6.0-RELEASE/usr/

share/doc/handbook/network-ipv6.html
[17] [Online]. Available: https://sourceforge.net/p/ulan/lwip-omk/ci/master/

tree/
[18] “Rtems net-legacy.” [Online]. Available: https://git.rtems.org/vijay/

rtems-lwip.git
[19] F. Bellard, “Qemu, a fast and portable dynamic translator,” in Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference,
ser. ATEC ’05. USA: USENIX Association, 2005, p. 41.

[20] T. Straumann, “qemu + uc5282,” 2009. [Online]. Available: https:
//lists.rtems.org/pipermail/users/2009-September/021089.html

[21] L. Mejdrech, “Networking and tcp/ip stack for helenos system,” 2010.
[22] A. Kantee, “The design and implementation of the anykernel and rump

kernels,” Aalto university, 2016.
[23] “Porting lwIP - FreeRTOS.” [Online]. Available: https://docs.aws.

amazon.com/freertos/latest/portingguide/porting-lwip.html
[24] G. Bloom and J. Sherrill, “Harmonizing ARINC 653 and Realtime

POSIX for Conformance to the FACE Technical Standard,” in 2020
IEEE 23rd International Symposium on Real-Time Distributed Comput-
ing (ISORC), May 2020, pp. 98–105, iSSN: 2375-5261.

[25] D. Cederman, D. Hellström, J. Sherrill, G. Bloom, M. Patte, and M. Zu-
lianello, “RTEMS SMP for LEON3/LEON4 Multi-Processor Devices,”
in Data Systems In Aerospace, Warsaw, Poland, Jun. 2014.

[26] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “Design patterns
for the industrial Internet of Things,” in 2018 14th IEEE International
Workshop on Factory Communication Systems (WFCS), Jun. 2018, pp.
1–10.

