
1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

1

Event Notification in CAN-based Sensor Networks
Gedare Bloom, Member, IEEE, Gianluca Cena, Senior Member, IEEE, Ivan Cibrario Bertolotti, Member, IEEE,

Tingting Hu, Member, IEEE, Nicolas Navet, and Adriano Valenzano, Senior Member, IEEE

Abstract—Preventive and reactive maintenance require the
collection of an ever-increasing amount of information from
industrial plants and other complex systems, like those based on
robotized cells, a need that can be fulfilled by means of a suitable
event notification mechanism. At the same time, timing and
delivery reliability requirements in those scenarios are typically
less demanding than in other cases, thus enabling the adop-
tion of best-effort notification approaches. This paper presents,
evaluates, and compares some of those approaches, based on
either standard CAN messaging or a recently proposed protocol
extension called CAN XR. In the second case, the combined use of
Bloom filters is also envisaged to increase flexibility. Results show
that the latter approaches are advantageous in a range of event
generation rates and network topologies of practical relevance.

Index Terms—Wired Sensor Networks, Industry 4.0, Industrial
Internet of Things, Cyber-Physical Systems, Controller Area
Network (CAN), Bloom Filter, CPAL

I. INTRODUCTION AND RELATED WORK

MODERN, highly-automated industrial plants and their
subsystems are becoming increasingly complex. To

face competition, the time to market a new product from
conception to mass production has to be as short as possible,
which means that exhaustive testing of the plant as a whole
before production starts is hardly possible. At the same time,
plant downtime due to failures must be reduced drastically.
As a consequence, preventive and reactive plant maintenance
are becoming increasingly important and are going to assume
a key role in Industry 4.0 [1]. The same techniques can
readily be applied to other complex distributed systems, such
as large intelligent vehicles [2] (trains, boats, heavy-duty
vehicles or for precision agriculture). A recent trend in these
scenarios is to collect large amounts of diagnostic information,
including those seemingly not directly involved in equipment
operation, so as to increase maintenance effectiveness by
exploiting the knowledge acquired through big data analytics.
This also enables automatic postmortem analysis upon failure
events. Data collection is performed by means of a plant-wide
distributed network of sensors. Importantly, it must be possible

This work was supported in part by the U.S. National Science Foundation
(CNS Grant No 1646317) and U.S. Department of Homeland Security
under Grant Award Number, 2017-ST-062-000003. Paper No. TII-18-3082.
(Corresponding author: Tingting Hu)

G. Bloom is with the Howard University, Department of Electrical En-
gineering and Computer Science, DC 20059, Washington, United States
(gedare@scs.howard.edu).

G. Cena, I. Cibrario Bertolotti, and A. Valenzano are with the National
Research Council of Italy, Institute of Electronics, Computer and Telecom-
munication Engineering (CNR-IEIIT), I-10129 Turin, Italy ({gianluca.cena,
ivan.cibrario, adriano.valenzano}@ieiit.cnr.it).

T. Hu and N. Navet are with the University of Luxembourg, Faculty of
Science, Technology and Communication (FSTC), L-4364 Esch-sur-Alzette,
Luxembourg ({tingting.hu, nicolas.navet}@uni.lu).

to retrofit this kind of network to an existing plant easily and
inexpensively, to make it cope with this data-centric paradigm.

Wireless Sensor Networks (WSN) undoubtedly represent
the most popular technology available to this purpose [3], [4].
Besides established solutions based on IEEE 802.15.4, others
are making their way to industrial plants, like IPv6 over Time-
Slotted Channel Hopping (6TiSCH) [5], which is considered
a key enabler for the Industrial Internet of Things (IIoT) [6],
[7]. Nevertheless, when higher performance or uninterrupted
operation are required, wired solutions are probably unavoid-
able. Although these solutions are not intended as a general
replacement for WSNs, they can profitably complement them.

Among the characteristics a wired sensor network should
feature, there are: a) very low cost per node; b) inexpensive
cabling and no active network equipment; c) ability to support
a sizable number of nodes; d) extended coverage; e) possibility
of carrying both data and power on the same cable. A strong
candidate for the underlying transmission technology in such
context is the Controller Area Network (CAN) [8], [9], which
is one of the most widely used solutions in automotive appli-
cations and is adopted in many networked embedded systems
as well. Interestingly, its medium access control mechanism,
based on collision-free arbitration, also has been proposed for
use on wireless networks [10].

The CAN protocol is especially suited to distributed event
notification, because it inherently supports broadcast transmis-
sion and is optimized for transferring short payloads (up to
8 bytes) efficiently. As shown in Fig. 1, CAN addressing is
based on tagging message contents with an identifier rather
than relying on a node-based addressing scheme, a feature that
expedites the design of producer-consumer systems and makes
content-based, hardware-assisted message filtering possible.
Being tied to data rather than communication endpoints, part
of the identifier can also be used to deliver information if
needed, further reducing communication overheads.

With respect to the above-mentioned wired sensor network
requirements, we observe that: a) CAN controllers are very
often embedded in modern microcontrollers and the cost of
external transceivers and connectors is limited; b) in small
networks, no network equipment at all is needed; c) it is pos-

b

12b 6b 16b 9b 3b

S
O
F

a
R
T
R

I
D
E

F
D
F

DLC CRC
C
D
L

A
C
K

A
D
L

EOF IFS
Direct Mapping

(CAN-DM)

IDENTIFIER

47b

S
O
F

IDENTIFIER
R
T
R

I
D
E

F
D
F

DLC

DATA FIELD

CRC
C
D
L

A
C
K

A
D
L

EOF IFS

12b 6b 16b 9b 3b64b

111b

Bloom Filter

(CANXR-BF)

Fig. 1. Frame formats of the event notification methods (without bit stuffing).

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

2

sible to connect up to 120 nodes to each network segment by
means of high-impedance transceivers [11] and, if necessary,
join multiple segments with simple multi-port repeaters [12];
d) a practically relevant network architecture using CAN with
a bit rate R = 50 kb/s (one of the bit rates recommended
by CANopen [13]) allows a maximum distance between the
farthest devices of up to 1.4 km in real scenarios [12] without
impairing the quality of signals transmitted on the bus, which
is enough for a relatively large system; e) a 4-wire cable is
customarily employed to supply power to transceivers, but
low-power sensors can also be powered from the same source.

With respect to conventional WSNs, a CAN-based sensor
network (CSN) [14], [15] offers noticeably higher dependabil-
ity because of the wired transmission support and robust MAC
layer. Moreover, CAN easily supports differentiated services
by enabling two concurrent classes of network traffic, namely
critical and non-critical. High-priority CAN messages are
reserved for safety- and time-critical data, possibly including
alarms used for corrective maintenance. Network bandwidth
left unused by critical data can be exploited for information
related to preventive maintenance (including, e.g., non-critical
warnings), which are mapped on low-priority messages and
managed according to a best-effort approach.

A CSN can offer two different application-level interfaces,
which differ by performance and features: either raw data
are encapsulated directly into CAN frames or the IP protocol
stack is layered above CAN [16]. In the first case, specific
unified data encoding can be possibly adopted to achieve
interoperability or to gather multiple signals in the same
message (mapping and aggregation), whereas the second case
is more faithful to the IIoT paradigm at the expense of some
performance degradation. Since this paper aims at evaluating
the raw performance that CAN offers to efficiently collect
large amounts of data produced by distributed sensors, we will
refer to the first case only.

Building on the preliminary ideas and results outlined in
prior work [17], this paper evaluates and compares some
methods for event notification in a CSN when the mean rate
of randomly generated events is varied. To this extent, a
simulation framework has been used, cross-checked by the-
oretical derivations. More specifically, a first class of methods
is based on standard CAN messaging, whereas the second is
based on the CAN with eXtensible in-frame Reply (CAN XR)
proposal [18], which is used either to collect events by means
of the combined message approach, or to compute Bloom
filters [19] in a distributed manner and deliver them at the same
time. Although evaluation has been performed taking classic
CAN as a reference, all considered methods can benefit from
the extended data field length that CAN FD frames support.
It is worth noting that only simple theoretical upper bounds
for the event notification rate were provided in [17], which
are quite far from what can be actually obtained in the more
realistic conditions we are considering here.

The paper is organized as follows: Section II highlights
some contexts where the approaches based on CAN XR,
including the peculiar one relying on Bloom filters, could
be advantageous. Section III and IV, besides providing some
background information and terminology, discuss the tech-

niques being compared. Then, Section V describes CPAL [20],
the modeling and simulation language used in the experiments,
and presents the internal architecture of the simulator in
detail. Last, Section VI analyzes and discusses results, and
Section VII draws a conclusion.

II. MOTIVATION AND APPLICATION FIELDS

Overall, CAN behavior resembles a distributed priority
queue: messages are inserted in the local transmission buffers
of nodes and served by the network, one by one, according
to their identifiers’ order. Whenever the operating conditions
force more events to be raised than the network is capable
to drain, increased latencies are experienced, which could be
possibly reduced by exploiting aggregation.

Prior work [17] postulates the use of CAN XR to gather
multiple events in the same message. The simplest solution is
to rely on a bitmap to this extent, but this makes the number
of events that can be collected and sent at once strictly limited
by the payload size of CAN frames. As shown in [17], such
drawback can be overcome by employing Bloom filters. On the
downside, false positives are known to be possibly generated
this way. Although delays are generally perceived to be a lesser
inconvenience than false positives, this is not always the case.
Some examples are given below.

A. Non-Critical Event Notification

According to the IIoT paradigm, predictive maintenance
is customarily modeled after a three-layer architecture [21],
[22]. The perception layer includes sensors aimed at acquiring
physical properties, while the network layer gathers all these
pieces of information and conveys them to the application
layer for further processing. A particularly relevant class of
sensing devices raise events upon the occurrence of specific
conditions, such as warnings indicating that some threshold
has been exceeded. If CAN is employed at the network layer,
each event triggers the transmission of a specific message.
The sensor may optionally keep on sending messages while
the warning condition stays active. Since the event generation
pattern is typically unknown, the related network traffic is
characterized by a large variability. This means that, depending
on overall system conditions, transmission latency may occa-
sionally increase noticeably and unexpectedly, which implies
that no guarantees can be provided for delivery times. In these
cases, graceful performance degradation is customarily sought.

For non-critical events, a higher notification rate provides
finer granularity in the acquired logs and better diagnostic
capabilities. Since interference of low-priority frames on the
high-priority ones does not depend in CAN on the overall
amount and rate of the former, it is in theory possible to
run the network near its capacity, with non-critical messages
scheduled essentially in the background. In practice, to make
behavior for the lowest priority frames fairer, an inhibit time
has to be set for them, which limits the generated traffic
in advance. For instance, in a large network including one
thousand sensors, setting the inhibit time to 1 s caps the overall
event generation rate to 1 kHz.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

3

Sometimes, CAN XR is advantageous over plain CAN. For
example, if deep learning is applied to the acquired data, the
property that event A is a direct cause of event B (and not vice-
versa) can be inferred by determining how frequently B takes
place shortly after A. If the system is characterized by fast
dynamics (tens to hundreds of milliseconds, as in mechanical
gears), reliably performing this check may be impractical when
message reception times suffer from unpredictable delays.
Conversely, this is feasible as long as timestamps are precise,
and is not precluded by the occasional occurrence of false
positives, as in the case when Bloom filters are used.

Another relevant case is related to heartbeat messages that
are repeatedly sent by asynchronously communicating devices
to notify they are alive. In CANopen [13], heartbeats are
mapped on very low priority frames, so as to limit interference
on process data. Using CAN XR to convey such events per-
mits to decrease bandwidth consumption. Additionally, Bloom
filters enable packing heartbeats of all nodes in a single frame
with no specific drawbacks since, irrespective of the presence
of occasional false positives, the complete lack of notifications
from some node is detected by sinks sooner than later.

B. Critical Event Notification

Another application scenario for the considered notification
methods concerns distributed critical systems with tight timing
constraints or safety requirements, like those found in many
industrial environments. Their correct behavior depends on the
ability of the network to deliver timely messages between
devices. In the case of CAN, feasibility analysis is custom-
arily employed to ensure that deadlines are always met [23].
While this approach suits real-time process data, which are
typically exchanged according to a periodic schedule, it may
be inadequate for the safety-relevant ones, as their generation
is often sporadic. At best, a minimum interarrival time can be
defined for them, which is often orders of magnitude shorter
than the average interarrival time. This implies that, in complex
systems where many safety devices (light curtains, emergency
stop push buttons, safety interlock switches, safe cameras, etc.)
are producing infrequent events according to unpredictable
patterns, feasibility analysis may be very ineffective.

Relying on CAN XR could be advantageous, as it reduces
the required bandwidth. The ability to gather notifications
can drastically reduce the message rate on the bus in critical
conditions, hence making feasibility analysis effective again.
This also holds when the overall number of safety events is
quite large (hundreds) and Bloom filters are adopted to permit
a variable number of them to be packed together. In fact,
occasionally triggering a (useless) safety countermeasure upon
a false positive is often a better option than experiencing a late
reaction to conditions that may cause a severe hazard (e.g., a
human operator being injured).

In the following, we mostly focused on non-critical data
exchanges. However, most results also apply, with minimal
changes, to safety-critical systems. In the latter case, feasibility
analysis ensures that the deadlines of CAN XR messages used
to collect safety-relevant events are never exceeded.

TABLE I
GLOSSARY

Symbol Meaning
a ∈ A Event sources, |A| represents the number of sources
s ∈ S Nodes, |S| represents the number of nodes
λa Generation rate of events belonging to a certain source a
Λ Total mean event generation rate (Λ < Λ dm

max for CAN-DM)
R CAN bit rate (R = 50 kb/s in simulations)
L dm,L bm,L bf Length of CAN-DM, CANXR-BM, CANXR-BF frames
d dm,d bm,d bf Event notif. latency for CAN-DM, CANXR-BM, CANXR-BF
tm CAN XR message transm. time, tm = L bm/R = L bf/R
b Bloom filter of length m bits
h0 FNV-1a master hash function
hi Family of k hash functions, i = 1 . . . k
kopt Optimum k according to Bloom filters theory
k∗ Implementation-related upper bound on k
β(b, a) Probabilistic membership check function of event a
M(a) Bloom filter mask of event a
Pfp False positive probability of a single filter query
N fp Expected number of false positives, exhaustive check
F False positive ratio

III. EVENT NOTIFICATION IN CAN
A. System Model

The CSNs being considered here follow a producer-
consumer model, in which a number of sources a ∈ A,
residing on a set of nodes s ∈ S, spontaneously push events
towards sinks, by means of CAN messages. For clarity, Table I
summarizes the symbols introduced here and in the next
sections. The main advantage of this approach with respect
to polling is that, in order to exchange data, sinks do not
need to know where sources are. This improves dependability
and makes adding sources at runtime easier. Sources typically
generate events according to signals acquired from the physical
world by means of sensors. In this work, events are assumed
to be unqualified, that is, not accompanied by any ancillary
information. For instance, a source may generate an event
when a certain signal exceeds a threshold. Multiple sources
may reside on the same node s, which is responsible for
sending messages through its network socket, thus modeling
a modular device able to manage several signals. Without loss
of generality, we will also assume that each source a generates
its own unique event, at its own rate λa. Hence, a will be used
to denote either a source or the event it generates, represented
as an integer between 0 and |A| − 1 included.

B. Event Mapping and Aggregation

The representation of events as integers allows the notion of
mapping events onto messages and their possible aggregation,
that is, storing and conveying multiple events in the same
message. Reference [17] discussed the following approaches:

1) Event Bitmap: Multiple events generated within the
same node s are aggregated in the message data field, which
contains a bitmap. The message identifier is typically used to
distinguish messages coming from different s, while a is used
to statically determine the event position within the bitmap.

2) Event List: Event identifiers are encoded as a list in
the data field, rather than being mapped to predetermined bit
positions. An abbreviated version of a may be put in the list,
as its scope is restricted by the message identifier.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

4

3) Direct Mapping (CAN-DM): Each event maps to a
distinct message, with a in the identifier field and an empty
data field. Events are not aggregated, hence this solution is
optimal when every node produces only one event. CAN-DM
is very flexible because its flat mapping does not require the
pre-allocation of any specific a to any specific s. Moreover, it
generates the shortest possible CAN messages.

Considering realistic systems, in which multiple event
sources can be associated to the same node, CAN-DM re-
mains the best candidate as long as the likelihood that a
node generates two or more events at the same time is
negligible. Otherwise, event bitmaps and event lists, which
support aggregation, are more suitable. Although they offer
a higher notification rate than CAN-DM, their behavior is
basically the same. In fact, local in-node aggregation in CAN
may not offer the same advantages as global network-wide
aggregation supported by recent proposals like CAN XR. For
the aforementioned reasons, and in order to simplify reasoning,
CAN-DM has been selected as the baseline for analysis and
comparison.

C. Direct Mapping of Events in CAN

With CAN-DM, the number of sources (events) |A| is
limited by the width of the identifier field, 11 b for classical
base frame format (CBFF) CAN frames [8]. Assuming the
whole identifier space is allocated to event notification, it
must be |A| ≤ 211 = 2048. Similarly, the total mean event
generation rate Λ =

∑
a∈A λa for the whole system is limited

by the available network bandwidth. Since, as shown in the
upper part of Fig. 1, the length of the shortest CBFF frame
is L dm = 47 b, the maximum rate at which generated events
can be transferred over the network, calculated as per [17], is
Λ dm

max = R/L dm ' 1.06 kHz when R = 50 kb/s. When Λ dm
max

is exceeded, network behavior becomes unstable and CAN
arbitration rules prevent the transmission of lower-priority
messages in favor of higher-priority ones. In this and the
following calculations, bit stuffing has not been taken into
account for simplicity, as the exact number of stuff bits varies
depending on message contents. Moreover, bit stuffing is likely
to affect all event notification approaches in a similar way.

An important metric for event notification is the notification
latency, denoted d dm for CAN-DM, that is, the time elapsing
from event generation to delivery. This case can be suitably
modeled, according to Kendall’s notation, as a G/D/1 queue,
where G is the generation process, D indicates determinis-
tic service time (equal to the duration of an empty frame,
1/Λ dm

max), and there is one single server (the CAN bus). A
simple expression for the mean latency d

dm
exists for an

M/D/1 queue, in which event generation is a Poisson process:

d
dm

=
1

2µ
· 2− ρ

1− ρ
=

1

2Λ dm
max
· 2− Λ/Λ dm

max

1− Λ/Λ dm
max

, (1)

where µ = Λ dm
max is the service rate and ρ = Λ/Λ dm

max denotes
the utilization. When Λ ≥ Λ dm

max, network capacity is no longer
sufficient to convey all events, and d

dm
becomes unbounded,

which implies system instability. This derivation has been used

to validate simulation results obtained for this scenario, as
shown in Fig. 5 and discussed in Section VI.

Summing up, the event generation rate λa indicates the
occurrence frequency of event a, and events generated by
all sources in the system contribute to the total mean event
generation rate Λ. In the scope of this paper, CAN messages
are used to deliver events from their source to the sinks, and
R represents the bit rate of the CAN bus.

IV. CAN XR AND BLOOM FILTERS

CAN XR [18] extends CAN functionality by allowing
multiple nodes to take part in the transmission of the same
frame. More specifically, every frame transmission in CAN
XR constitutes an atomic transaction and is started by an
initiator node. Multiple responders are allowed to contribute
their own data items to the frame’s data field as it transits on
the bus, while consumers observe the whole frame and have
these data items at their disposal altogether. The initiator also
supervises frame integrity, for instance, by inserting stuff bits
and terminating the frame with a proper CRC and trailer. Since
both the initiator and responders insert stuff bits based on the
same bit sequence they observe on the bus during a frame
transmission, stuff bits overlap perfectly.

It is worth remarking that nodes can play multiple roles
with respect to the same frame. For instance, the initiator
can also act as a responder, and then consume the whole
frame. Although only XR-enabled nodes can act as initiators
or responders, XR frames are compatible with the CAN frame
format and can be received by ordinary controllers.

The data field of an XR frame is conceptually split into one
or more slots, which are assigned to responders. Replies of
responders can be either disjoint—because each of them owns
an exclusive slot—or overlapping when they transmit within
the same shared slot. In the second case, the resulting bit
pattern on the bus is the bitwise AND among the bit patterns
sent by all responders.

As pointed out in [17], CAN XR supports high-rate event
notification by exploiting the combined message principle. The
lower part of Fig. 1 shows that a CAN XR frame transporting
a single shared slot (up to 64 b for CBFF) can be chosen
for encoding events. In particular, irrespective of the node on
which the related source resides, each event can be reserved a
specific bit in the message payload, which is seen as a system-
wide defined bitmap. We denote this method CANXR-BM.
Unlike methods presented in Section III-B, which can merely
aggregate events generated within the same node, this permits
to aggregate events coming from anywhere in the network. If
the largest CBFF frames are used, |A| = 64, L bm = 111 b,
and the maximum supported notification rate increases to
Λ bm

max = |A| ·R/L bm ' 28.83 kHz when R = 50 kb/s.
Unfortunately, a limited number of events are supported this

way. This drawback can be addressed by defining a number of
bitmaps, each of which is mapped on a distinct XR transaction,
but doing so partitions the space of events in advance and
reduces the chances of aggregation. Alternatively, the FD base
frame format (FBFF) can be used, which conveys up to 64
bytes, hence increasing the maximum bitmap size to 512 b.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

5

However, this enlarges the notification latency consequently
and may impair feasibility analysis because of priority in-
version phenomena. A third solution is to use probabilistic
encoding, like Bloom filters, in the place of bitmaps.

A. Bloom Filters

A Bloom filter [19] is a data structure that can represent a
set of elements a, events in this case, drawn from a possibly
infinite universe A, in a space-efficient manner. The data
structure is optimized for time-efficient element insertion and
probabilistic membership check. It consists of a fixed-length
array b of m Booleans, denoted as b(j), j = 0 . . .m− 1.
Each Boolean is typically represented as a bit, whose values
are written as 0 (false) and 1 (true) in the following. A family
of k hash functions hi, i = 1 . . . k, maps elements of A into
sets of indices in b, that is, hi : A 7→ {0 . . .m− 1}. All bits of
an empty filter are set to 0. The insertion of an element a ∈ A
into a filter b takes place by setting all bits of b indicated
by the above-mentioned hash functions when calculated in a
to 1. Denoting the assignment operator as←, insertion can be
expressed as ∀i b(hi(a))← 1.

In the following, with a slight abuse of notation, we will
write a ∈ b to mean that element a has been added to b as
described above. A Boolean-valued function β(b, a), given a
Bloom filter b and an element a, returns 1 if a belongs to b,
that is, a ∈ b → β(b, a). Informally speaking, membership
check is performed by looking at all the bits of b indicated by
hi(a), and yielding 1 if and only if they are all set. That is,
β(b, a) =

∧k
i=1 b(hi(a)), where ∧ denotes the Boolean AND

operation. The reason why this is a probabilistic membership
check becomes clear by contrasting element insertion and
membership check. Due to the fact that typically m � |A|,
the collision probability of hi cannot be zero and it may
happen that hi(a) = hi′(a

′) even though a 6= a′. It is
therefore possible that the bits of b queried when checking
a’s membership have all been set by the insertion of other
elements a′, a′′, . . . 6= a into b. This gives rise to a false
positive because β(b, a) incorrectly indicates that a belongs
to b, although it does not. If element deletions from a Bloom
filter are forbidden, a similar reasoning leads to conclude that
false negatives are impossible, because the bits of b are never
reset to 0 after being set to 1 as a result of an insertion.

As shown in [24], assuming that the hi are ideal, the false
positive probability Pfp(m, k, n) of β(b, a) when applied to a
Bloom filter of length m that makes use of k hash functions
and contains n elements can be approximated by:

Pfp(m, k, n)
.
= P (β(b, a) | a /∈ b) ≈

(
1− e− kn

m

)k
. (2)

If m and n are known, it can also be proved that the
optimal value of k, which minimizes Pfp, is kopt = m

n ln(2).
Pfp(m, k, n) depends on k and the ratio n/m, but not on |A|.
Instead, |A| comes into play when calculating the expected
number of false positives N fp(m, k, n, |A|) when a Bloom
filter that truly contains n elements is exhaustively checked
for the presence of all a ∈ A. Individual checks are Bernoulli
trials with a probability of false positive Pfp(m, k, n) and
|A| − n such trials may lead to a false positive, because the

other n necessarily lead to a true positive. Therefore, the total
number of false positives follows a Binomial distribution and
N fp(m, k, n, |A|) is its expected value, that is:

N fp(m, k, n, |A|) = (|A| − n) · Pfp(m, k, n). (3)

Note that the definition above pertains to a sink that is
interested in all possible a ∈ A. Sinks that only look for a
subset of the events in A will encounter a proportionally lower
number of false positives. On the other hand, non-ideal hi (for
instance, real-world hash functions with imperfect dispersion)
obviously worsen Pfp and N fp.

Referring back to Fig. 1, a shared slot of an XR transaction
mapped on a maximal-size CBFF frame, whose length is
L bf = 111 b, is an ideal candidate to transport a Bloom filter b
of length m = 64 for event notification, for instance according
to the implementation described in Section IV-C. We will refer
to this method as CANXR-BF in the following.

B. Comparison of Event Notification Methods

Similarly to CAN, event notification methods based on CAN
XR follows the event-triggered paradigm rather than the time-
triggered paradigm. Namely, any node with a pending event
can start transmitting on the bus at the earliest opportunity,
and no frame is sent if no event occurs. Operating in this way
is more energy efficient, introduces less interference to other
traffic on the same bus, and lowers the interrupt rate on sinks.

A noteworthy difference between approaches based on CAN
and CAN XR is that, in the former case a implicitly determines
event delivery priority through CAN bus arbitration. This can
be used to provide certain events a higher quality of service
(QoS) in terms of worst-case delivery latency and jitter than
others, but it might lead to either unfair behavior or suboptimal
performance when all events must be assured the same QoS.
In the case of CAN XR, if a single frame is used to convey
all events, uniform QoS is guaranteed for them, irrespective of
the frame identifier, which can be chosen freely. Alternatively,
multiple identifiers can be used to partition events into distinct
QoS classes, at the expense of aggregation opportunities.

Unlike CAN-DM, the event notification latency when using
CANXR-BM or CANXR-BF (d bm and d bf, respectively) de-
pends on Λ only marginally, because with these approaches
events are aggregated locally and kept within each node s
until the next transmission opportunity, that is, for one frame
transmission time at most. Then, they are further aggregated
and delivered with the next frame transmission. As a con-
sequence, d bm = d bf ≤ 2L bf/R regardless of Λ. However,
according to (3) a higher number of false positives may appear
in CANXR-BF when Λ increases, since the number n of
events aggregated in each transaction grows. This is because
n reasonably coincides with the number of events generated
while the bus is busy with the previous transaction. The main
difference between notification methods lies therefore in how
the system reacts to transients in which network capacity is
exceeded. In CAN-DM, d dm increases and, ultimately, events
are dropped when Λ ≥ Λ dm

max due to queue overflow, leading to
false negatives. Event notification is instead always timely in
CANXR-BF, because d bf is bounded, but the number of false

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

6

FNV-1a

Event identifier a

z -bit hash h0

(d+3) -bit hash h1

(d+3) -bit hash hk

…
S

lic
in

g

0 0 0Bloom filter, 2d bytes

Hash value used as bit index

… 1 …

Fig. 2. Bloom filter implementation (in negative logic).

positives may increase noticeably. Finally, both false negatives
and false positives are prevented by CANXR-BM.

Concerning the supported universe of events, its cardinality
|A| in CANXR-BM is strictly bounded because of static en-
coding. Bloom filters in CANXR-BF do not pose, in principle,
any bound on |A|. However, as shown in (3), the expected
number of false positives increases linearly with |A|. Finally,
bounds on |A| in CAN-DM depend on the size of the CAN
identifier. They can be overcome by using the extended frame
format, to the detriment of the notification rate.

Deciding which solution is better depends on the specific
application context and, in particular, on whether worsening
latency (culminating in false negatives) or generating false
positives has the least impact on performance and correct
operation. In the following, for space reasons, we will mainly
focus on the two most antithetical solutions, that is, CAN-
DM and CANXR-BF, in order to highlight differences in their
behavior. Properties of CANXR-BM lie in between.

C. Implementation Details

The Bloom filter employed in the simulator has been
realized as in Fig. 2, which illustrates an insertion operation.

1) Master hash function: The choice of hash function that
lies at the base of the filter fell on the FNV-1a variant of the
Fowler-Noll-Vo algorithm [25], [26]. FNV-1a is a byte-based
iterative algorithm that, operating on input data a, calculates
a z-bit hash denoted by h0(a), where z is a power of two,
typically between 32 and 1024. Using a non-cryptographic
hash function does not pose any issue in this application, while
offering unquestionable advantages in terms of implementation
complexity and execution performance.

2) Hashes derivation and validation: Function h0 outputs
a single, relatively large z-bit hash. Instead, as described in
Section IV-A, Bloom filters need a family of k functions, and
hashes must be in the 0 . . .m− 1 range. In general, if the
Bloom filter must fit in a CAN XR data field of D = 2d

bytes, it must be m = 8 · 2d = 2d+3, which corresponds to a
(d+ 3)-bit hash. An efficient method to determine hi from h0

is to slice the z-bit hash into chunks of d+ 3 bits, by means
of shift and mask operations. By convention, h1 is derived
from the lowest-order bits of h0 and hk from the highest. The
maximum k that can be obtained in this way is k∗ = b z

d+3c.
For instance, d = 3 for a maximum-size CBFF frame. If

z = 64, a sensible choice for processors with 64-bit integer
arithmetic, this method can accommodate up to k∗ = 10
hashes. In the simulations, the maximum admissible value

k = k∗ has been used because, for the chosen value of m
and the foreseen range of n, it is kopt ≥ 10. To validate
the hash quality, the normalized entropy of hi when d = 3
and |A| = 16000 was calculated as a measure of dispersion.
Experimental results show that, even though 2 iterations of the
FNV-1a algorithm would nominally suffice to handle the value
of |A| being considered—because it can be represented on 2
bytes—the dispersion of hi for i > 3 would be unacceptably
low. In the model, the issue has been addressed by padding
the event identifier with zeros and incrementing the number
of iterations to 8. Other, more complex methods of generating
hi, such as seeding the hash algorithm with a value derived
from i, were not further considered in this work because,
given the validation results just mentioned, they would not
have significantly improved the hash quality.

3) Parallel implementation in negative logic: Although
Section IV-A might suggest that Bloom filter insertion and
membership check are serial, bit-by-bit operations, a parallel,
register-based implementation is also possible provided the
filter fits in a machine register, or can be easily manipulated
by means of multiple-precision instructions. This happens, for
instance, when m ≤ 64 on processors with 64-bit integer
arithmetic. In this case, each a can be associated with an m-bit
maskM(a) in which a bit is set at one if and only if it is indi-
cated by any hi(a), that is,M(a) =

∨k
i=1M(hi(a)), where ∨

denotes the bitwise OR operation and M(j), j = 0 . . .m− 1,
is a function that returns a bit mask with the j-th bit set to 1.
Accordingly, we can write:

b← b ∨M(a) (insertion) and (4)

β(b, a) =

{
1 if b ∧M(a) =M(a)
0 otherwise (membership). (5)

Most importantly, even though Bloom filter theory is tra-
ditionally formulated in positive logic, as in Section IV-A, a
negative logic implementation is also possible by means of
a straightforward application of De Morgan’s laws. With this
approach, an empty filter b′ is set to all 1 instead of all 0,
and the bitwise NOT of M(a), denoted as M(a), is used as
a mask. Then, (4) and (5) become:

b′ ← b′ ∧M(a) (insertion) and (6)

β(b′, a) =

{
1 if b′ ∨M(a) =M(a)
0 otherwise

(membership). (7)

Conversion of the positive logic to negative logic results
in the insertion function changing from bitwise OR to AND,
which is efficiently implemented by the CAN bus, as the
logic that the CAN bus itself represents is analogous to a
“wired AND”. More specifically, in the terminology of CAN,
a dominant bit transmitted on the bus corresponds to logical
0 whereas a recessive bit corresponds to logical 1. When
transmitted at the same time on the bus, the dominant bit wins.
This implementation choice is of utmost importance to make
event aggregation possible both within a node s and across
the network, as hinted at in Section IV-A. This is because,
according to (6), event insertion corresponds to a sequence of
m-bit AND operations, which can then be performed in two
phases:

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

7

1) By the processor of each node s, before CAN XR frame
transmission, for all a generated within s, to build |S|
partial filters that aggregate events node by node.

2) By the bus bit logic, while the CAN XR shared slot is
being transmitted, to complete event aggregation across
the whole network.

As a result, thanks to the associative property of AND, the
Bloom filter eventually delivered to the sinks aggregates all
events progressively inserted into it, regardless of their origin.

4) Execution time and memory overheads: The evaluation
of execution time overhead focused on function h0 because all
the other operations just discussed (essentially, bitwise shifts
and Boolean operations) are executed in one clock cycle or
less on any modern processor, provided their operands fit in
a register. The reference, public-domain C implementation
of FNV-1a [25], when compiled for the ARM Cortex-M3
instruction set, using gcc 4.9.3 at optimization level O3 and
the compiler’s own 64-bit arithmetic code generator, calculates
h0 in 146 clock cycles. The execution time can be further
improved by enabling function inlining, thus bringing the
overhead down to 128 cycles in the test program. However,
the performance gain of inlining is generally affected by
the surrounding code. When considering a core frequency of
100 MHz, which is typical of inexpensive microcontrollers like
the NXP LPC1768 [27], these cycle counts correspond to an
execution time between 1.28µs and 1.46µs. As detailed in
Section V-B, h0 calculation is only used to prepare the masks
M(a) corresponding to all events of interest a, an operation
performed either offline or at system initialization time. Hence,
the execution time overhead is likely to be acceptable in most
applications.

The memory overhead associated with storing each M(a)
is equal to the mask width m rounded up to a multiple of the
machine word size, that is, 8 bytes when m = 64. The total
size of the table holding allM(a) on each sink is linear in the
number of events of interest to that sink. When implemented
by means of a simple, sequential table scan, the execution
time of a membership check applied to all events of interest
is linear in the number of events, too. Notwithstanding, the
membership check against individual elements of the table as
in (5) or (7) is performed very quickly, because it only consists
of a bitwise Boolean operation followed by a comparison.

V. CPAL MODELING AND SIMULATION ARCHITECTURE

In order to validate analytic results and facilitate the compar-
ison of diverse event notification mechanisms, a simulator has
been designed and implemented based on the Cyber-Physical
Action Language (CPAL) introduced in Section V-A. The
general architecture modeling both CAN-DM and CANXR-BF
is depicted in Fig. 3 and discussed in Section V-B. Many
relevant aspects about CANXR-BM behavior can be directly
inferred from simulations related to CANXR-BF.

A. The CPAL Language, Runtime, and Multi-Interpreter

The modeling language and simulation environment used
for the simulations is CPAL [20], which is a domain-specific

language that supports the programming, graphical represen-
tation and simulation of embedded systems. CPAL is a high-
level language based on Finite-State Machines (FSM), and
other abstractions that are natural in the domain of embedded
systems and communication protocols such as processes and
communication channels with queue and stack semantics.

The concept of process is an abstraction at the core of the
language. Process is a built-in type for a recurrent activity.
Processes can be seen as functions that are activated in a
time-triggered (e.g., periodically) or event-triggered manner
(e.g., when certain activation conditions are met). Embedded
in each process is an FSM, possibly reduced to a single state,
to define the logic of the process in a non-ambiguous manner.
A transition from one state to another state is triggered by a
Boolean condition evaluating to true, or after a certain time
has been spent in the state. When a process is activated, it
resumes in the latest state it was in. First, a transition out of
this state is taken if any can be, and only then the code of the
current state is executed. The process can then yield the flow
of control by terminating, or continue its execution.

In CPAL, functional and non-functional concerns are decou-
pled. The non-functional concerns, such as timing and schedul-
ing, are expressed in annotations. For instance, it is possible
through timing annotations to model dynamically changing
execution times, transmission times, activation patterns, and
execution jitters. This enables the designer to reproduce in
simulation a timing realistic behavior of the model, early in the
design phases. Another distinctive feature of CPAL is that the
execution of CPAL models does not rely on code generation
but on model interpretation: the models are interpreted by a
lightweight real-time execution engine that can be hosted by an
OS, or run on bare hardware on certain embedded platforms.
The CPAL binaries and the documentation are freely available
from https://www.designcps.com.

CPAL has been previously used for the simulation of com-
munication protocols, such as for evaluating the performance
of a service-oriented automotive middleware [28] and the pre-
cision of the Time-Triggered Ethernet clock-synchronisation
protocol [29]. Because it is a domain-specific language, it leads
to more readable and compact code than C, C++ or Java. For
instance, the core of the CAN model used in this study is
less than 200 lines long. Like typically done in Model-Driven
Engineering flow, views can be extracted from the code of the
models: the functional architecture (i.e., processes and data-
flows between processes), the automata defining the logic of
the processes and a Gantt chart of the processes’ executions.

The nodes in this study are asynchronous, in the sense that
they possess their own local clock and their behavior is gov-
erned by independent processes. A modeling pattern for such
asynchronous systems is to allocate each node to a dedicated
interpreter and let the interpreters share information through
communication channels. The use of multiple interpreters, one
per node or, more generally, one per computational unit, is
the multi-interpreter feature of CPAL. It provides discrete-
event simulation with a local time on each interpreter and
a global simulation time. The local times of the interpreters
progress independently up to a time point where an event in
the simulation necessitates a synchronisation point between the

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

8

Simulated node

Event mapping

Network process
— Bus scheduling
— Sinks simulation
— Data collection

a1,1 a1,g1
… a|S|,1

a|S|,g|S|
…

Event generators

Local queue

…

Sink Sink…

Fig. 3. General architecture of the CPAL-based simulator.

interpreters, such as a process reading input data and a process
terminating and making updated data available to the other
processes. At such time points, the input and output communi-
cation channels between interpreters are updated. Underlying,
the multi-interpreter relies on a synchronous semantics where
the processes executing on the interpreters can only read input
data upon the start of their execution and write output data
upon their termination, but not at any other times. Building
on this synchronous semantics, the multi-interpreter simulation
engine iteratively increases the global simulation time, by
jumping to the next scheduled event on one of the interpreter,
in such a way as to enforce the precedence constraints induced
by the data flows between processes (e.g., no data can be read
before it has been produced).

B. CPAL-based Simulator

As shown in Fig. 3, the modelled system based on CPAL
consists of two kinds of component, namely the node model
and the network model. Multiple nodes can be instantiated
from the general node model and communicate with each other
through the network.

1) Node model: A node s is associated with gs event
sources (denoted by as,1 . . . as,gs). A separate event generator
is specified for each source as,l and implemented as a CPAL
process Pas,l

. Events pertaining to as,l are generated upon
each execution of Pas,l

whose activation is controlled by a
Poisson law, with a configurable event generation rate denoted
as λas,l

. This models memoryless systems, where the inter-
arrival time between subsequent events of the same source is
exponentially distributed. More specifically, besides generating
an event, each process also determines its next activation
time and notifies the interpreter by manipulating the per-
process activation queue. In this way, the event generation time
tas,l

is translated to the activation time of Pas,l
. It is worth

remarking that, process execution takes zero time (regardless
of its complexity) in the simulation mode unless otherwise
specified with timing annotations. This guarantees that events
are generated at the expected time.

Events generated within the same time interval by different
sources will either be mapped onto individual frames or
aggregated into a single frame, depending on the mapping and
aggregation method in use. After that, frames are transmitted
to the bus through the network interface, which is abstracted

as a local queue. If CAN-DM is used, messages are built upon
event generation, using as,l as the frame identifier as shown
in Fig. 1 and enqueued to the local queue for transmission.

For what concerns CANXR-BF, since the event sources
associated to a node s are known a priori, their corresponding
mask M(as,l) can be computed in advance and stored in a
suitable data structure (e.g., a table), which permits fast access
and reduces runtime overhead. In this way, the Bloom filter
b′s,l for event as,l can be obtained straightforwardly according
to (6) upon event generation. Event aggregation within a node
s is performed when a transmission starts as it is possible that
events occur in the middle of an ongoing transmission. The
node needs to wait for the current transmission to complete
before initiating another one to deliver the incoming events.
As a result, Bloom filters are enqueued directly.

2) Network model: The network model, represented as
a CPAL process as well, implements bus scheduling, sinks
simulation and data collection.

First of all, frame transmission can be initiated by any node
with pending events when the bus is idle. This is emulated
by modelling the network as an event-triggered process. As
long as there is data available in local queues, the network
process will be activated, given the previous transmission has
concluded. If new events are supposed to be generated exactly
at the same time, precedence is given to event generation,
instead of network process activation. This can be achieved
by proper configuration at the system level and then enforced
by the CPAL multi-interpreter during simulation.

Upon execution, the network process scans through local
queues and determines the message to be sent next. For CAN,
it is the one with the highest priority among all local queues,
which is determined by the frame identifiers, in turn by as,l.
This simulates the arbitration mechanism in CAN. In the case
of CAN XR, events currently available in the local queues
will be aggregated into a single message, and its data field
is constructed by following the two-step event aggregation
illustrated in Section IV-C. If b′s, s = 1 . . . |S| denotes the
partially aggregated filter on each node, the final data field D
is given by D =

∧|S|
s=1 b

′
s.

Since CAN is a broadcast medium, events observed on the
bus are also observed by the sinks, given errors are outside
the scope of this work. Hence, instead of modelling sinks
explicitly, they are integrated as part of the network model.
This optimization helps reduce the complexity of the model
and improve simulation efficiency, without losing generality.

To facilitate post-analysis, two pieces of information are
collected upon every execution of the network process, namely
what events are detected on the bus and when events are
delivered to the sink. Regarding CAN, the event can be
retrieved directly from the frame header. Instead for CAN XR,
D is checked against all possible Bloom filters in the system:

∀s,∀l β(D, as,l) =

{
1 if D ∨M(as,l) =M(as,l)
0 otherwise

. (8)

As discussed in Section IV-A, false positives are possible. In
order to assess the false positive ratio F , two counters Ed and E
are used to keep record of the total number of events detected
during a simulation run (updated upon every transmission),

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

9

1

10

100

1000

0 100 200 300 400 500 600 700 800 900 1000 1100

L
at

en
cy

(m
s)

Total mean event generation rate Λ = λ|A| (Hz)

d bf CANXR-BF (99-th PCTL)
d dm CAN-DM (99-th PCTL)
d bf CANXR-BF (worst case)
d dm CAN-DM (worst case)

2L bf/R

Fig. 4. Event notification latency comparison, |A| = 1000 sources.

and the events truly generated as it is refreshed every time the
network process iterates through all the local queues during
event aggregation. Hence, F = (Ed − E)/E .

The delivery time of an event t′as,l
is marked by the time in-

stant that the corresponding message transmission completes.
Together with tas,l

, the event notification latency (d dm or d bf)
can be calculated for each event. It is worth noting that the
two timings just concern real events, rather than events being
mis-reported.

3) System-level orchestration: The CPAL multi-interpreter
provides direct support to specify nodes making up of a
distributed system and data flows among them. Nodes are
mapped to separate interpreters and communication among
them are handled automatically by the multi-interpreter. Less
than 60 lines of CPAL code are sufficient to set up the system
depicted in Fig. 3 for simulation.

It is worth remarking that, independent time domains are
maintained for each interpreter and synchronized with a com-
mon time base. The event generation time tas,l

is mapped to
the activation time of Pas,l

running on node s. Instead, the
event delivery time t′as,l

is calculated based on the activation
time of the network process (which marks the beginning
of a transmission), and the frame transmission time on the
bus (that is L dm/R for CAN and L bf/R for CAN XR).
The execution time of the network process is set to the
frame transmission time by means of timing annotation. When
transmission completes, the time notion of all interpreters will
be updated to reflect time elapsed.

VI. RESULTS AND ANALYSIS

In order to provide meaningful figures in the CSN scenarios
we envisaged (e.g., predictive maintenance), simulations were
performed running the CAN bus at R = 50 kb/s. However,
results do not actually depend on R. Better, generic plots can
be provided for, e.g., the false positive ratio or the latency d·R
normalized to the bit time versus the normalized generation
rate λ/R. This means that considerations below also apply
when faster CAN bit rates are taken into account, e.g., for
in-vehicle systems where R = 500 kb/s, which stretch over
much smaller areas (overall cable length is below 100 m).

0

10

20

30

40

50

60

0 100 200 300 400 500 600 700 800 900 1000 1100

0

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 1000 1100

99
-th

PC
T

L
L

at
en

cy
(m

s)

Total mean event generation rate Λ = λ|A| (Hz)

|A| = 100

|A| = 200

|A| = 500

|A| = 1000

M
ea

n
L

at
en

cy
(m

s) |A| = 100

|A| = 200

|A| = 500

|A| = 1000

Theoretical d
dm

Fig. 5. CAN + Empty data field (CAN-DM) mean and 99-th percentile latency.

A. Notification Latency

As discussed in Sections III and IV, an important metric
of any event notification system is its latency. Accordingly,
a first round of simulations was carried out to compare the
two selected notification methods from this point of view.
Fig. 4 depicts, using a semi-logarithmic scale, both the worst-
case value and 99-th percentile of d bf and d dm, with respect
to the total mean event generation rate Λ, measured with
|A| = 1000 sources uniformly distributed across |S| = 100
nodes, that is, ∀s gs = 10. All sources have been configured
to generate exponentially distributed events at the same rate
λ = Λ/|A| (symmetric configurations are ordinarily assumed
in literature). Moreover, in this and all the other experiments
discussed in the following, the simulation time has been
configured to collect E = 100000 event instances starting at
a time t0 = 180 s. This delay ensures that the simulation has
reached a steady state before data collection begins.

As shown in the figure, d bf remains bounded across the
whole range of Λ considered in the simulations. More specif-
ically, when using CANXR-BF, any event can indeed be
delivered within 2L bf/R, as foreseen in Section IV-A. As
long as the size of the frame payload is the same, notification
latency d bm of CANXR-BM coincides with CANXR-BF. In
fact, in both cases all pending events are combined and sent
at once (two different encoding schemes are used). By using
a maximal-size FBFF frame, the number of supported sources
in CANXR-BM can be increased from |A| = 64 to |A| = 512,
which is comparable to simulations. By doing so, however,
the frame size becomes L bm = 579 b and latency increases to
2L bm/R ' 23.16 ms. Note that, a blocking time in the order
of 20 ms may affect negatively other real-time messages.

On the contrary, due to queuing delays, d dm grows more
than linearly as Λ increases, even though individual message
transmission times remain constant, and quickly becomes un-
acceptable as the limit Λ dm

max (shown in the figure as a vertical
dashed line) is approached, as postulated in [17]. Additional
tests were performed to analyze a possible dependency of d dm

on |A| when using CAN direct mapping. Eq. (1) rules out
such a dependency for what concerns its mean value d

dm
, but

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

10

0

2

4

6

8

10

0 100 200 300 400 500 600 700 800 900 1000 1100

Fa
ls

e
po

si
tiv

e
ra

tio
(%

)

Total mean event generation rate Λ = λ|A| (Hz)

|A| = 100

|A| = 200

|A| = 500

|A| = 1000

Theoretical, |A| = 100

Theoretical, |A| = 500

Fig. 6. CAN XR + Bloom filter (CANXR-BF) false positive ratio.

not for its distribution. Fig. 5 plots d dm as a function of Λ for
varying |A|. The upper part of the figure shows d

dm
, while the

lower part pertains to the 99-th percentile of d dm. Experimental
results confirm the absence of significant dependencies and,
at the same time, offer the opportunity to further validate the
simulator, because the measured d

dm
completely matches the

theoretical value given by (1), also reported in the figure as a
dashed plot.

Results in Fig. 4 clearly indicate that, latency-wise, CAN-
DM is advantageous when Λ < 500 Hz. The main reason of
this behavior is that empty CAN messages are much shorter
than the CAN XR messages used to deliver the Bloom filter,
namely, L dm ' 2/5L bf. As shown in the figure, when Λ
approaches 0.95 kHz the worst-case latency experienced in
CAN-DM quickly reaches (and exceeds) 500 ms. This cor-
responds to about 500 times the CAN frame transmission
time (L dm/R), and may be unacceptable in several practical
cases. Generally speaking, when Λ is small queuing delays
are negligible even without performing event aggregation, and
message transmission time dominates the latency. On the other
hand, when Λ grows, the queuing delay of CAN-DM grows
according to (1), whereas for methods based on CAN XR it
remains constant because of event aggregation, as discussed
in Section IV-C.

B. False Positive Ratio
A second set of experiments was aimed at assessing the

false positive ratio F of CANXR-BF, measured as a function
of Λ and |A|, as described in Section V-B. This is a peculiar
characteristic of this method, which CAN-DM and CANXR-
BM do not exhibit. As specified in Section IV-A, simulations
have been carried out assuming that the sink is looking for any
possible a ∈ A, which leads to the worst false positive ratio
for that sink. As hi(a) are computed offline, seeking individual
events in CANXR-BF has about the same complexity as per-
forming frame filtering on identifiers in CAN-DM. Hardware
assisted approaches can be envisaged in CAN XR, in the same
way as done in CAN with filter ID and mask.

Results are summarized in Fig. 6, in which the measured
false positive ratio F , expressed as a percentage of the total

number of events generated in the simulation, is shown.
Values of F above 10% have not been displayed to improve
readability. Systems exhibiting such a high false positive ratio
are hardly useful in practice although, as shown in Fig. 4, d bf

still stays constant because m is constant.
The simulation results shown in Fig. 6 confirm both the

complex dependency of F on Λ through Pfp and n, according
to (3) and (2), as well as the linear dependency on |A|
expressed by (3). It is also worth remarking that, when
Λ = 500 Hz, that is, at the latency break-even point between
the two methods shown in Fig. 4, it is F ≤ 3%, even with the
maximum number of sources being considered, |A| = 1000.

By reducing the number of event sources, it is possible to
keep F in the same range as given above even for much higher
values of Λ, for instance, up to 1 kHz when |A| = 100. It
is worth pointing out that |A| = 100 is still above what a
bitmap in CANXR-BM is able to support, that is, at most 64
distinct events. Although mapping XR transactions on CAN
FD enables larger bitmaps to be used, Bloom filter perfor-
mance would also benefit from a larger m, thus supporting a
higher |A| with an acceptable F . Hence, especially for large
values of |A|, the maximum tolerable F is likely going to
be the limiting factor on the maximum Λ that CANXR-BF is
reliably able to support.

By observing both Fig. 6 and 5, we can conclude that reduc-
ing |A| improves the performance of CANXR-BF, whereas it
does not affect CAN-DM. This further confirms the advantage
of CANXR-BF concerning reactivity in the range 500 ≤ Λ ≤
1000 Hz for low values of |A|. It should be noted that, in the
same range of Λ, if |A| is small enough to fit on a single
frame then CANXR-BM becomes the optimal solution.

C. Validation of CANXR-BF Behavior

It can be proved that N , a discrete random variable with
support [1,+∞[that represents the number of events collected
in the same message when notification methods based on CAN
XR are used (both CANXR-BM and CANXR-BF), follows a
Poisson distribution with mean Λtm, in which the first two
bins have been grouped. Hence, the probability mass function
(pmf) of N is:

P [N = 1] = P(0; Λtm) + P(1; Λtm)

= e−Λtm(1 + Λtm), (9)

P [N = n] = P(n; Λtm) = e−Λtm
(Λtm)n

n!
, n > 1, (10)

where P(·) is the Poisson pmf and tm = L bm/R = L bf/R is
the message transmission time. The mean number of events
per message with CAN XR can be generically expressed as:

E[N] =
∑
n>0

nP [N = n] = Λtm + e−Λtm . (11)

The expected false positive ratio in CANXR-BF is given by:

F̂ =

∑
n>0 P [N = n]N fp(m, k, n, |A|)

E[N]
, (12)

which can readily be calculated because N fp(m, k, n, |A|) is
given by (3) while m, k, and |A| are simulation parameters.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

11

10−6

10−5

10−4

10−3

10−2

10−1

100

101

0 100 200 300 400 500 600 700 800 900 1000 1100

|A| = 100 unless otherwise specified

Fa
ls

e
po

si
tiv

e
ra

tio
(%

)

Total mean event generation rate Λ = λ|A| (Hz)

m = 32, k = 10

m = 64, k = 10

m = 128, k = 10

m = 512, k = 10, |A| = 1000

m = 512, k = 10

Fig. 7. Relationship between CANXR-BF false positive ratio and m.

The theoretical prediction of the false positive ratio given
by (12) has been included in Fig. 6 for comparison with
simulations. As can be seen, experimental results match very
accurately the prediction for |A| = 100. When using a higher
number of event sources, for instance, |A| = 500, the higher
than expected false positive ratio can easily be explained
by remembering that (2) assumes that h0 is a perfect hash
function. This is not true in practice, and the discrepancy
becomes more evident as the size of the universe A the
function has to work on increases. The histogram of the
number of messages holding n true events collected during
the simulations provided a further way to cross-validate the
correctness of (9) and (10). Namely, experimental results
matched the theoretical prediction within ±0.3% across the
whole set of simulation runs.

Fig. 7 shows the CANXR-BF false positive ratio F̂ , calcu-
lated according to (12), as a function of m, in the range of Λ
considered in the previous experiments and with |A| = 100.
The solid line in the figure acts as a reference and corresponds
to the circled, dashed line in Fig. 6, drawn on a semi-
logarithmic graph for easier reading. As expected, halving
the Bloom filter size by setting m = 32 increases the false
positive probability by about two orders of magnitude and
makes this choice suitable only for small values of Λ, as shown
by the top-most dotted line in Fig. 7. For instance, it must
be 0 ≤ Λ ≤ 200 Hz to keep the false positive ratio below
1%. Although the presence of m in the equation of kopt (see
Section IV-A) might suggest that a value of k lower than 10
would lead to better results, k = 10 still leads to a significantly
lower false positive probability in the range of Λ of practical
interest. This is because kopt also depends on n and, according
to (11), E[N] shrinks as Λ decreases.

Further increasing m is also possible. As shown by the
dashed and dot-dashed lines in Fig. 7, concerning the cases
m = 128 and m = 512, respectively, this leads to a significant
improvement in the false positive ratio although, in this case,
k cannot be increased because it is capped by k∗. In turn, k∗

is fixed by the hash generation algorithm (see Section IV-C2).
In particular, when m = 512 also the case |A| = 1000 (in red)
results in a quite low F̂ . Overall, (12) provides a convenient

way of predicting the false positive ratio of CANXR-BF.
Note that the transmission of a Bloom filter with m > 64

requires either the use of a CAN FD frame or the fragmenta-
tion of the filter into multiple classical CAN messages. In both
cases, there is an adverse impact on d bf that shall be taken into
account when dimensioning the system. In the most general
conditions, conventional CAN schedulability analysis can be
used to assess the worst-case event delivery latency depending
on the other possible sources of traffic in the system.

VII. CONCLUSION

This paper compared some event notification methods,
suitable for CAN-based sensor networks, by a combination
of theoretical analysis and simulation-based measurements. In
particular, CAN-DM is based upon the standard CAN protocol
and encodes the event identifier in the CAN’s identifier field,
leaving the message payload empty. Instead, CANXR-BM and
CANXR-BF take advantage of the in-frame reply feature of
the CAN XR protocol to aggregate multiple events, built and
delivered in the same message payload, by using a bitmap and
a Bloom filter, respectively. These methods are well suited,
for instance, to gather diagnostic information and warnings
sporadically generated by nodes in a distributed system. Such
events can be profitably conveyed as background, low-priority
traffic, using the bandwidth left available by cyclic real-time
exchanges. It is worth pointing out that, because of their unpre-
dictable generation pattern, the bandwidth at disposal may be
occasionally exceeded. Another interesting application field of
above methods is related to safety-critical events. In this case,
however, bounded delivery times shall be guaranteed for them,
even though their occurrence is basically unforeseeable.

Results show that, for CAN busses running at R = 50 kb/s,
methods based on CAN XR compare favorably with respect to
CAN-DM from the point of view of event notification latency
when the total event generation rate is Λ ≥ 500 Hz. Above
the break-even point, the latency with CAN-DM increases
rapidly due to queuing delays, whereas with CANXR-BM and
CANXR-BF it is bounded and remains below an acceptable
value. Among the solutions based on CAN XR, CANXR-BM
is likely the most appropriate in typical operating conditions.
Nevertheless, CANXR-BF is able to accommodate a variable
(and potentially larger) number of events. Moreover, unlike
bitmaps, no static allocation is required in advance for Bloom
filters, which tangibly lowers configuration efforts in large
sensor networks. All that is needed is that event identifiers
are network-wide unique, as for frame identifiers in CAN.

Timeliness in high traffic conditions shown by CANXR-BF
comes at the expense of a certain number of false positive
indications, which are the counterpart of CAN-DM’s false neg-
atives due to excessive notification latency and the limitations
of CANXR-BM on the number of event sources. Therefore,
CANXR-BF is a valid alternative when: a) deterministic and
low notification latency is demanded in a system characterized
by many event sources (hundreds to thousands), b) variability
of event generation may cause Λ to occasionally grow beyond
the expected limit, and c) the application at hand can tolerate
false positives better than false negatives. It is worth remarking

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

12

that modern Bloom filter designs [30] may reduce and, in some
cases, completely avoid false positives. Their applicability to
CANXR-BF has not been explored for the time being.

Last, but not least, unlike techniques based on legacy CAN
where only local in-node event aggregation is performed, none
of the considered notification methods depend on how the |A|
event sources are distributed across the |S| nodes, that is, on
the values of gs. In the end, deciding the best option definitely
depends on the specific application context.

As part of our future work, we plan to investigate more
efficient event notification methods that, given the limits on
channel capacity, try to set specific tradeoffs on performance
metrics, for instance, latencies and false notification rates.

REFERENCES

[1] J. Wan, S. Tang, D. Li, S. Wang, C. Liu, H. Abbas, and A. V. Vasilakos,
“A manufacturing big data solution for active preventive maintenance,”
IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 2039–
2047, Aug. 2017.

[2] C. P. Ward, P. F. Weston, E. J. C. Stewart, H. Li, R. M. Goodall,
C. Roberts, T. X. Mei, G. Charles, and R. Dixon, “Condition monitoring
opportunities using vehicle-based sensors,” Proceedings of the Institution
of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, vol.
225, no. 2, pp. 202–218, 2011.

[3] B. Lu and V. C. Gungor, “Online and remote motor energy monitoring
and fault diagnostics using wireless sensor networks,” IEEE Transactions
on Industrial Electronics, vol. 56, no. 11, pp. 4651–4659, Nov. 2009.

[4] O. Kreibich, J. Neuzil, and R. Smid, “Quality-based multiple-sensor
fusion in an industrial wireless sensor network for MCM,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 9, pp. 4903–4911,
Sep. 2014.

[5] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:
deterministic IP-enabled industrial internet (of things),” IEEE Commu-
nications Magazine, vol. 52, no. 12, pp. 36–41, Dec. 2014.

[6] G. Choudhary and A. K. Jain, “Internet of Things: A survey on
architecture, technologies, protocols and challenges,” in Proc. Interna-
tional Conference on Recent Advances and Innovations in Engineering
(ICRAIE), Dec. 2016, pp. 1–8.

[7] F. Tao, J. Cheng, and Q. Qi, “IIHub: an Industrial Internet-of-Things hub
towards smart manufacturing based on cyber-physical system,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 5, pp. 2271–2280,
2018.

[8] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling, International
Organization for Standardization, Dec. 2015.

[9] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco, and
N. Cruz, “A scalable and efficient approach for obtaining measurements
in CAN-based control systems,” IEEE Transactions on Industrial Infor-
matics, vol. 4, no. 2, pp. 80–91, May 2008.

[10] N. Pereira, B. Andersson, E. Tovar, and A. Rowe, “Static-priority
scheduling over wireless networks with multiple broadcast domains,” in
Proc. 28th IEEE International Real-Time Systems Symposium (RTSS),
2007, pp. 447–458.

[11] SN65HVD233-HT 3.3V CAN Transceiver Data Sheet, Texas Instruments
Inc., Jan. 2015.

[12] CAN-CBM I or Y Repeater — Hardware Manual, Esd electronics, Inc.,
Jul. 2003.

[13] CiA, CiA 301 V4.2.0 – CANopen application layer and communication
profile, CAN in Automation e.V., Feb. 2011.

[14] M. A. Pillai, S. Veerasingam, and D. Y. Sai, “CAN based smart sensor
network for indoor air quality monitoring,” in Proc. 3rd International
Conference on Computer Science and Information Technology, vol. 8,
Jul. 2010, pp. 456–460.

[15] K. C. Lee and H.-H. Lee, “Network-based fire-detection system via
controller area network for smart home automation,” IEEE Transactions
on Consumer Electronics, vol. 50, no. 4, pp. 1093–1100, Nov. 2004.

[16] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Seamless
integration of CAN in intranets,” Computer Standards & Interfaces,
vol. 46, pp. 1–14, May 2016.

[17] G. Bloom, G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano,
“Optimized event notification in CAN through in-frame replies and
Bloom filters,” in Proc. 13th IEEE International Workshop on Factory
Communication Systems (WFCS), May 2017, pp. 1–10.

[18] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “CAN with
extensible in-frame reply: Protocol definition and prototype implemen-
tation,” IEEE Transactions on Industrial Informatics, vol. 13, no. 5, pp.
2436–2446, Oct. 2017.

[19] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[20] N. Navet and L. Fejoz, “CPAL: High-level abstractions for safe embed-
ded systems,” in Proc. ACM International Workshop on Domain-Specific
Modeling (DSM), Oct. 2016, pp. 35–41.

[21] M. R. Abdmeziem, D. Tandjaoui, and I. Romdhani, “Architecting the
internet of things: State of the art,” in Robots and Sensor Clouds,
A. Koubaa and E. Shakshuki, Eds. Cham: Springer International
Publishing, 2016, pp. 55–75.

[22] G. Bloom, B. Alsulami, E. Nwafor, and I. Cibrario Bertolotti, “Design
patterns for the industrial Internet of Things,” in Proc. 14th IEEE
International Workshop on Factory Communication Systems (WFCS),
Jun. 2018, pp. 1–10.

[23] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Syst., vol. 35, no. 3, pp. 239–272, Apr. 2007.

[24] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys
& Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[25] G. Fowler, L. C. Noll, K.-P. Vo, D. Eastlake, and T. Hansen, “The FNV
non-cryptographic hash algorithm,” Internet Engineering Task Force,
Internet-Draft, Jun. 2017.

[26] L. Chi and X. Zhu, “Hashing techniques: A survey and taxonomy,” ACM
Comput. Surv., vol. 50, no. 1, pp. 11:1–11:36, Apr. 2017.

[27] LPC17XX User manual, UM10360 rev. 2, NXP B.V., Aug. 2010.
[28] J. R. Seyler, T. Streichert, M. Glaß, N. Navet, and J. Teich, “Formal

analysis of the startup delay of SOME/IP service discovery,” in Proc.
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2015, pp. 49–54.

[29] L. Fejoz, B. Régnier, P. Miramont, and N. Navet, “Simulation-based fault
injection as a verification oracle for the engineering of time-triggered
Ethernet networks,” in Proc. Embedded Real-Time Software and Systems
(ERTSS), Jan. 2018, pp. 1–10.

[30] S. Z. Kiss, É. Hosszu, J. Tapolcai, L. Rónyai, and O. Rottenstreich,
“Bloom filter with a false positive free zone,” in Proc. IEEE Inter-
national Conference on Computer Communications (INFOCOM), Apr.
2018, pp. 1–9.

Gedare Bloom (M’08) received his Ph.D. in com-
puter science from The George Washington Uni-
versity in Washington, D.C., in 2013. He joined
the Department of Computer Science at Howard
University as Assistant Professor and founding di-
rector of the Embedded Systems Security Lab in
2015. His research expertise is computer system
security with particular focus on real-time embedded
systems, and he has published over twenty peer-
reviewed articles in these areas. The techniques
he applies to solve problems along the hardware-

software interface range from computer architecture, computer security,
cryptography, operating systems, and real-time analysis. He has served as
a program committee member, artifact evaluation committee member, and
technical referee for flagship conferences and journals in the area of real-time
systems.

1551-3203 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2019.2904082, IEEE
Transactions on Industrial Informatics

13

Gianluca Cena (SM’09) received the Laurea degree
in Electronic Engineering and the Ph.D. degree in
Information and System Engineering from Politec-
nico di Torino, Italy, in 1991 and 1996, respectively.
Since 2005 he has been a Director of Research with
the Institute of Electronics, Computer and Telecom-
munication Engineering, National Research Council
of Italy (CNR-IEIIT), Turin. His research interests
include wired and wireless industrial communica-
tion systems, real-time protocols, and automotive
networks. In these areas he has co-authored about

140 papers and one patent. He received the Best Paper Award of the IEEE
Workshop on Factory Communication Systems in 2004, 2010, and 2017,
and the Best Paper Award of the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS in 2017.

Dr. Cena served as Program Co-Chairman of the IEEE Workshop on Factory
Communication Systems in 2006 and 2008, and as Track Co-Chairman in
six editions of the IEEE Conference on Emerging Technologies and Factory
Automation. Since 2009 he has been an Associate Editor of the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS.

Ivan Cibrario Bertolotti (M’06) received the Lau-
rea degree (summa cum laude) in computer science
from the University of Torino, Turin, Italy, in 1996.

Since then, he has been a Researcher with the
National Research Council of Italy (CNR), Rome,
Italy. Currently, he is with the Institute of Electron-
ics, Computer and Telecommunication Engineering
(IEIIT), Turin. He has taught several courses on
real-time operating systems at Politecnico di Torino,
Turin; has co-authored two books on the same top-
ics; and serves as a Technical Referee for primary

international journals and conferences. His research interests include real-
time operating system design and implementation, industrial communication
systems and protocols, as well as modeling languages and runtime support
for cyber-physical systems. He received, as a coauthor, the Best Paper Award
presented at the 8th IEEE Workshops on Factory Communication Systems
(WFCS 2010).

Tingting Hu (M’11) received her master degree in
Computer Engineering in 2010 and Ph.D. degree
with the best dissertation award in Computer and
Control Engineering in 2015 both from Politecnico
di Torino, Turin, Italy.

She works as a research scientist in the Univer-
sity of Luxembourg with the Faculty of Science,
Technology and Communication. Formerly, she was
with the University of Luxembourg as a post-doc
researcher (2017-2018). Between 2010 and 2016,
she also worked as a research fellow in the National

Research Council of Italy (CNR), Turin, Italy. Her primary research interest
concerns embedded systems design and implementation, spanning through
topics such as real-time operating systems, communication protocols, formal
verification of software modules and communication protocols, as well as
security, with a special focus on the practical application of these concepts.
Currently, she is focusing on the research of model driven engineering for
safety-critical embedded systems. In the meantime, she serves as a program
committee member and technical referee for several primary conferences and
journals in her research area.

Nicolas Navet has been a professor in Computer
Science at the University of Luxembourg since May
2012. Formerly, from 1995 to 2012, he was with IN-
RIA in France, as doctoral candidate, researcher then
head of a research team in real-time systems. His
research interests include real-time and embedded
systems, communication protocols and risk assess-
ment. Since the mid-1990s, he has worked on many
projects with OEMs and suppliers in the automotive
and aerospace domains. More information on his
work can be found at http://nicolas.navet.eu.

Adriano Valenzano (SM’09) received the Laurea
degree magna cum laude in electronic engineering
from Politecnico di Torino, Torino, Italy, in 1980. He
is Director of Research with the National Research
Council of Italy (CNR). He is currently with the
Institute of Electronics, Computer and Telecommu-
nication Engineering (IEIIT), Torino, Italy, where
he is responsible for research concerning distributed
computer systems, local area networks, and commu-
nication protocols. He has coauthored approximately
200 refereed journal and conference papers in the

area of computer engineering.
Dr. Valenzano is the recipient of the 2013 IEEE IES and ABB Lifetime

Contribution to Factory Automation Award. He was also awarded for the best
paper published in the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS
during 2016, and received the Best Paper Awards for the papers presented at
the 5th, 8th and 13th IEEE Workshops on Factory Communication Systems
(WFCS 2004, WFCS 2010 and WFCS 2017).

Adriano Valenzano has served as a technical referee for several international
journals and conferences, also taking part in the program committees of
international events of primary importance. Since 2007, he has been serving
as an Associate Editor for the IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS.

