
FPGA SoC Architecture and Runtime to Prevent
Hardware Trojans from Leaking Secrets

Gedare Bloom, Bhagirath Narahari, Rahul Simha
George Washington University

Washington, DC
{gedare,narahari,simha}@gwu.edu

Ali Namazi, Renato Levy
Intelligent Automation, Inc.

Rockville, MD
{anamazi,rlevy}@i-a-i.com

Abstract—Hardware Trojans compromise security by invali-
dating the assumption that hardware provides a root-of-trust
for secure systems. We propose a novel approach for an FPGA
system-on-chip (SoC) to ensure confidentiality of trusted soft-
ware despite hardware Trojan attacks. Our approach employs
defensive techniques that feature morphing on-chip resources for
moving target defense against fabrication-time Trojans, onion-
encryption for confidentiality, and replication of functionally-
equivalent variants of processing elements with arbitrated voting
for resilience to design-time Trojans. These techniques are en-
abled by partial runtime reconfiguration (PRR) and are managed
by a hardware abstraction layer (HAL) that reduces developer
burden. We call our approach the Morph Onion-encryption
Replication PRR HAL, or MORPH. MORPH aims to provide
a stable interface for embedded systems developers to use in
deploying applications that are resilient to hardware Trojans.

I. INTRODUCTION

During integrated circuit (IC or chip) manufacturing, un-
trusted entities along the supply chain have ample opportunity
to add malicious inclusions, or hardware Trojans, to chips.
Once active, the malicious circuitry can leak cryptographic
keys to allow unprivileged access to information including pro-
prietary code and sensitive data. At the same time, embedded
systems increasingly rely on field programmable gate arrays
(FPGAs) for economic reasons such as shorter development-
release cycles and economy of scale. Library implementations
of soft core processors have become readily available and
FPGAs have achieved commoditization with software support
and size sufficient for system-on-chip (SoC) designs. An
FPGA-based soft SoC has flexibility advantages over ASICs,
albeit at decreased performance, and commercial availability
of partially runtime reconfiguration (PRR) has further in-
creased the flexibility appeal of FPGAs. Unfortunately, the
widespread reuse of circuit designs creates the possibility that
untrusted third parties can inject malicious code into soft
IP cores. Furthermore, hard IP cores remain vulnerable to
hardware Trojans injected into FPGA circuitry at fabrication-
time in an untrusted foundry.

We propose a framework for current FPGA devices that
offers security against design- and fabrication-time hardware
Trojans. This framework combines moving target defense
using PRR, encrypted execution using onion-encryption, and a
stable hardware abstraction layer (HAL) that isolates software
from the complexity of the underlying hardware; see Figure 1.

We call our approach Morph Onion-encryption Replication
PRR HAL, or MORPH. Applications running on MORPH are
minimally impacted, because they execute on the SoC’s main
CPU in parallel to and independently from the HAL, which
manages the PRR. Our initial results indicate that MORPH
incurs low size and time overhead (below 1% each on state-
of-the-art FPGA devices) after device boot completes and SoC
execution begins. The combined effect of MORPH is to shift
the root of trust from the hardware into the HAL so that attacks
on the hardware do not compromise security of the software.

II. THREATS AND ATTACKS

There are two widely-accepted threat models for hardware
Trojans: untrusted foundry and untrusted designer. We assume
both models, and consider (possibly colluding) hardware Tro-
jans. MORPH’s security objective is to prevent leakage of the
application’s code and data that executes in the SoC.

The strongest attack in our threat model is one that in-
troduces hardware Trojans in IP cores that collude with
hardware Trojans added during fabrication. Trojans injected at
the foundry will target fixed structures on the FPGA device, or,
with a known expected configuration, specific locations of the
reconfigurable logic. Note that attacking such fixed locations
is not simple, because the FPGA device vendor tests these
areas prior to shipping devices to consumers. Furthermore, the
area of fixed units is small and therefore amenable to visual
inspection and sampling-based destructive testing. Trojans in
IP cores could rely on the functionality of Trojans added by
the foundry, thus any channel between untrusted third party
IP and fixed FPGA structures must be treated with caution.

III. MORPH: ARCHITECTURE FOR FPGA SECURITY

We named the MORPH platform for the five capabilities it
relies upon, which we describe after explaining the bootstrap
process and cryptographic keys that MORPH uses.

The configuration bitstream of MORPH comes in two parts:
the boot configuration with an initial HAL configuration we
call the BOOT HAL, and the runtime configuration, which
contains another HAL configuration and soft IP cores for
MORPH’s SoC. The bootloader contains a decryption module
with access to the key (see below) for the boot configuration.
The bootloader places the BOOT HAL in reconfigurable logic,
begins its execution, and then halts. The runtime configuration



Fig. 1. Architecture of Morph Onion-encryption Replication PRR HAL
(MORPH). Black-filled cubes represent hard IP cores. The dashed area holds
the SoC and HAL, soft IP cores that are subject to morph operations.

(a) FPGA starts, decrypts the HAL, places an
initial BOOT HAL.

(b) FPGA places BOOT HAL, which loads,
decrypt and places a new HAL randomly.

(c) HAL loads, decrypts and places SoC IP
cores randomly.

Fig. 2. MORPH uses standard FPGA bootstrapping techniques to load the
BOOT HAL, which loads and starts the HAL processor. The HAL builds the
SoC, begins morphing it, and starts application execution.

is encrypted by a key that the BOOT HAL reads from non-
volatile storage. The BOOT HAL loads the HAL processor
from the runtime configuration, configures it to a random
location in the FPGA, starts it, then halts. The HAL processor
builds the SoC and starts the application while periodically
morphing SoC resources. Figure 2 demonstrates the boot
process of MORPH.

MORPH uses at least four cryptographic keys, which are
loaded in on-chip non-volatile storage at a trusted site before
deployment. The boot-key is used by the bootloader to decrypt
the configuration containing the BOOT HAL, as described
above. The HAL-key is used by the BOOT HAL to read the
configuration of the HAL processor and its program, and then
transferred to the HAL when it starts. The HAL uses the HAL-
key to decrypt the soft IP cores composing the SoC. Two
additional keys, the L1-key and L2-key, are used for off-chip
I/O including memory access. These latter keys are named
after the levels of cache at which they are applied. The L1-key
encrypts the stores (respectively decrypts the loads) between
the CPU in the SoC and the L1 caches. The L2-key does the
same between the L1 caches and the L2 cache. (Uncached
accesses still go through the cryptographic units.)

M. Morph operation

Morph is an operation conducted by the HAL to rearrange
the hardware resources in use by the executing system by
replacing and binding resources in a new location. Resources
are available at the granularity of soft IP cores from a library
as commonly used in FPGA-based development. The soft IP
cores are relocatable designs of functional units that can be
hierarchically composed to create complex configurations up
to the a complete SoC. The use of third-party IP cores raises
the possibility of malicious code in the design level, which we
address with onion-encryption and replication. The security
principle behind morphing is moving target defense, which is
the idea that variance in the attack surface at runtime increases
the difficulty of attack.

O. Onion-Encryption

We adapt dual-encryption from prior art [1], but now
deployed in a single-chip SoC with a traditional memory
hierarchy. For multi-layer encryption, we prefer the term
onion-encryption. We use onion-encryption to protect against
leakage of code and data by adding layers of encryption along
the path memory takes in the system. All of memory begins
onion-encrypted and remains that way throughout execution.
Peripherals only ever see onion-encrypted memory. The outer
layer of an onion is decrypted (encrypted) in between the L2
and L1 caches, and the inner layer is decrypted (encrypted) in
between the L1 caches and the main processor. The security
principle for onion-encryption is defense-in-depth: any single
compromise of cryptography does not lead to total loss of
confidentiality.

R. Replication

Replication of functionally-equivalent IP cores obtained
from different vendors is one way to prevent design-time
hardware Trojans from successfully modifying the behavior of
a chip. With more than two IP cores, a voting protocol can de-
termine which output to select in case of disagreement. Beau-
mont et al. [2] pioneered this approach, along with fragmented
execution to limit access to code and data. We use a similar
scheme as the prior work, except we limit replication to the
outer-most cryptographic modules used in onion-encryption,
which we suggest is sufficient for ensuring confidentiality.
MORPH uses cryptography rather than fragmented execution
to protect from leakage, the HAL implements replication, and
a simple circuit arbitrates voting of the outer layer onion-
encryption modules.

P. PRR

PRR support enables a reconfigurable device to modify part
of its configuration while the device runs. The HAL uses PRR
to relocate IP cores in available FPGA resources dynamically
by placing a new IP core, stopping the original component,
transferring its state and connections, and resuming normal
execution, all without rebooting the FPGA. Some parts of
an FPGA design are not reconfigurable, such as the clock
circuitry and I/O pins. (Figure 1 shows those fixed parts as 3-D



(a) HAL decides to morph the CPU. (b) HAL places a new CPU IP core.

(c) HAL stops the FPGA and up-
dates routing lines.

(d) HAL starts the FPGA and erases
the old CPU.

Fig. 3. MORPH uses PRR to relocate parts of an SoC. Here, the HAL
replaces a processor pipeline.

black-filled boxes.) MORPH uses a soft IP core on the FPGA
to implement PRR by reading the encrypted configuration
data from a non-volatile memory and loading it into the
reconfigurable block. During PRR the SoC remains running
except for a brief interruption to update routing lines from an
old block to its replacement. Figure 3 shows an example of
using PRR to replace a processor pipeline stage.

H. HAL

Operating systems use HALs to operate on third party
hardware. The HAL in MORPH is more sophisticated than
that found in an OS, and instead is an active component
that bootstraps the SoC, manages cryptographic keys, and
randomly—using a true random number generator (TRNG)
circuit—morphs itself and the SoC IP cores on-the-fly. Appli-
cation software and IP cores execute without any knowledge
of the HAL’s operations.

MORPH’s HAL consists of two parts, a soft IP core with a
simple processor and internal memory, and a software runtime.
When the HAL boots it immediately begins morph opera-
tions by relocating itself. It also zeroes-out the bootloader,
decrypts the SoC IP cores, and starts to morph them into the
reconfigurable fabric. After the HAL instantiates all the IP
cores, it starts execution of the application on the CPU while
continuing to morph the IP cores.

IV. SECURITY ANALYSIS

The morph operation prevents an attacker at fabrication-time
from knowing where to place hardware Trojans. Even if the
attacker knows the configuration, the location of any particular
IP core cannot be predicted after the HAL boots (subject
to the security of the TRNG), thus limiting fabrication-time
Trojans to attacking fixed structures on the FPGA (hard
IP). As we noted earlier, the bootloader structure is small
and verifiable by sampling, imaging, and traditional circuit
extraction techniques. The layered encryption of all outgoing
data ensures that any information available at I/O pins is
encrypted. Since all data are onion-encrypted coming out of
the reconfigurable logic, Trojans in the fixed structures cannot
successfully leak unencrypted data.

Onion-encryption in combination with replication also pre-
vents leakage stemming from design-time Trojans that circum-

vent cryptographic units. The burden for the attacker increases
as a majority of the cryptographic cores must be compromised
to disable onion-encryption. More modules can be added
to increase the burden further. Furthermore, cryptographic
modules with access to both the L1-key and L2-key would
need to be compromised in order to leak both cryptographic
keys and thus be able to read the encrypted main memory.
Thus, the security guarantee holds probabilistically when more
than half of the cryptographic modules are trustworthy.

The trusted computing base (TCB) includes the BOOT
HAL, HAL, and cryptographic key storage. Successful com-
promises of the TCB leads to loss of security for the system.
Note that the bootloader is not in the TCB, but if confidential-
ity of soft IP cores in the SoC is required, then the bootloader
must be trusted and therefore verified. We assume fabrication-
time Trojans in the key storage and initial location of the
BOOT HAL are detectable. After boot, only the HAL and
key storage remains in use, as the bootloader and BOOT HAL
hand-off control of the device to the HAL processor, which
erases the BOOT HAL and starts morphing itself randomly
across the chip.

V. PRELIMINARY RESULTS

MORPH consumes FPGA resources, incurs performance
loss, and increases energy consumption. FPGA resources,
which include configurable logic (slices composed of flip-
flops and look-up tables) and on-chip memory (block RAM or
BRAM). Performance is affected by added boot time, crypto-
graphic operations, and reconfiguration. Other considerations
when evaluating MORPH are energy dissipation and size
requirements, i.e. the usage of FPGA resources. In terms of
measuring MORPH’s impact on performance, we considered
the added boot costs and the cost for the HAL to morph
one module periodically. The baseline we use is a statically-
configured FPGA SoC that lacks all of MORPH’s features.

We model MORPH using a Xilinx PicoBlaze 8-bit processor
with 16K of on-chip block RAM (BRAM) for the HAL
processor, and a simple AES-128 cryptographic module. In our
evaluations, we target two FPGAs from Xilinx: the Virtex-5
110T and the Virtex-7 485T. At most, the HAL processor uses
96 FPGA slices and 16 BRAMs, and each AES module uses
74 slices and no BRAM. MORPH requires five AES modules
(that should be independently sourced), one attached to the
HAL processor for decrypting configurations, one attached to
the main CPU within the SoC, and three between the SoC
and off-chip; the last three have their outputs routed through
a simple majority voting circuit.

We use a partial initial configuration for booting, thus
the overhead for booting is driven primarily by loading the
BOOT HAL and HAL. The cost for the HAL to load the
runtime configuration is approximately the same as the cost
to configure the FPGA device with the same SoC. Thus,
the overhead for boot is the time needed to load the BOOT
HAL and HAL configuration. We estimate these overheads by
supposing the BOOT HAL and HAL both fit in PRR IP blocks
that use 5% each of the FPGA (a conservative estimate, see



Process Time Overhead
Boot 10%

PRR (1s period) 1%
PRR (5s period) 0.2%

PRR (10s period) 0.1%

TABLE I
MORPH TIME COST ESTIMATES.

FPGA Resources MORPH Usage
Device Slices BRAMs Slices BRAMs

Virtex 5 110T 17,280 296 2.70% 5.4%
Virtex 7 485T 75,900 2940 0.61% 0.54%

TABLE II
RECONFIGURABLE AREA REQUIREMENTS FOR MORPH

size costs below), thus the time overhead for boot is an extra
10% to configure these blocks.

Under normal processing (not during reconfiguration), the
HAL executes in parallel to the SoC, therefore contributing no
time overhead. Similarly, onion-encryption operates in parallel
to the memory path, and is not expected to contribute to the
critical path. The static power overhead for the HAL and AES
modules is less than 1% of overall power. We have not yet
quantified the dynamic power overhead, which is application-
dependent.

During the reconfiguration portion of relocation, the pro-
cessing clock stops for about 10 ms, which determines the
bulk of the time overhead for morphing. During this time only
static (quiescent) power is consumed. Note that PRR costs are
linearly inversely-proportional to the period.

We calculated costs for boot and reconfiguration at periods
of 1, 5, and 10 seconds, and report results in Table I. The
costs for booting seem high as a percentage, but the costs
are reasonable due to the short duration and infrequency of
booting. For example, the Virtex-7 device takes 405 ms to
load a full configuration, so 10% overhead is about 40 ms
longer. We did not account for other costs associated with
morphing, which include loading and decrypting bitstreams
into the HAL, finding an unused random location, and erasing
the old functional unit after it has been replaced.

MORPH’s size overhead is the extra area required for
the HAL processor, its memory, and the five AES modules.
Table II shows the size overhead when using MORPH in two
popular devices from Xilinx.

VI. RELATED WORK

We build on our past work with dual-encryption [1] and
architecture-OS protocols for detecting hardware Trojans [3].
Waksman and Sethumadhavan [4] use cryptography at the
granularity of functional units in a processor to defend against
value-triggered Trojans, but only against the untrusted de-
signer. Replication using functionally-equivalent variants was
first proposed by McIntyre et al. [5] at the software-level to
detect hardware Trojans, and Beaumont et al. [2] propose an
architectural solution using replication, voting, and fragmented
execution. These works focus on untrusted design, and attacks

from untrusted foundry or end-user void security guarantees.
Kim and Villasenor [6] propose to replace functions in an
ASIC with FPGA implementations when a hardware Trojan
is detected in the ASIC, which is functionally correct but
requires a Trojan detector and Trojan-free FPGA—MORPH
is proactively defensive and assumes Trojans are present in
the FPGA. Mentens et al. [7] add temporal and spatial jitter
in cryptographic hardware similar to the morph operation, but
the lack of variation in functional blocks means design-time
Trojans are not defended against.

VII. CONCLUSION

The MORPH framework provides the ability to design em-
bedded software systems resistant to hardware Trojan attacks
without increased development time and at low runtime cost.
Our plans for future work include defending against physical
attacks (malicious end user), exploring the design-space for
security-performance tradeoffs, and ensuring integrity as a
security objective.

ACKNOWLEDGMENT

This work is supported in part by ONR N00014-14-1-0386.

REFERENCES

[1] G. Bloom, B. Narahari, R. Simha, and J. Zambreno, “Providing secure
execution environments with a last line of defense against trojan circuit
attacks,” Computers & Security, vol. 28, no. 7, pp. 660–669, Oct. 2009.

[2] M. Beaumont, B. Hopkins, and T. Newby, “SAFER PATH: Security archi-
tecture using fragmented execution and replication for protection against
trojaned hardware,” in Design, Automation Test in Europe Conference
Exhibition (DATE), 2012, Mar. 2012, pp. 1000–1005.

[3] G. Bloom, B. Narahari, and R. Simha, “OS support for detecting
trojan circuit attacks,” in Hardware-Oriented Security and Trust, IEEE
International Workshop on. Los Alamitos, CA, USA: IEEE Computer
Society, 2009, pp. 100–103.

[4] A. Waksman and S. Sethumadhavan, “Silencing hardware backdoors,”
in 2011 IEEE Symposium on Security and Privacy (SP), May 2011, pp.
49–63.

[5] D. McIntyre, F. Wolff, C. Papachristou, S. Bhunia, and D. Weyer,
“Dynamic evaluation of hardware trust,” in Proceedings of the 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, ser.
HST ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp.
108–111.

[6] L.-W. Kim and J. Villasenor, “Dynamic function replacement for system-
on-chip security in the presence of hardware-based attacks,” IEEE Trans-
actions on Reliability, vol. 63, no. 2, pp. 661–675, Jun. 2014.

[7] N. Mentens, B. Gierlichs, and I. Verbauwhede, “Power and fault analysis
resistance in hardware through dynamic reconfiguration,” in Crypto-
graphic Hardware and Embedded Systems CHES 2008, ser. Lecture
Notes in Computer Science, E. Oswald and P. Rohatgi, Eds. Springer
Berlin Heidelberg, Jan. 2008, no. 5154, pp. 346–362.


