
Hardware-Enhanced Distributed Access Enforcement for

Role-Based Access Control

Gedare Bloom
Dept. of Computer Science

George Washington University

gedare@gwu.edu

Rahul Simha
Dept. of Computer Science

George Washington University

simha@gwu.edu

ABSTRACT

The protection of information in enterprise and cloud platforms
is growing more important and complex with increasing numbers
of users who need to access resources with distinct permissions.
Role-based access control (RBAC) eases administrative complex-
ity for large-scale access control, while a client-server model can
ease performance bottlenecks by distributing access enforcement
across multiple servers that consult the centralized access deci-
sion policy server as needed. In this paper, we propose a new ap-
proach to access enforcement using an existing associative array
hardware data structure (HWDS) to cache authorizations in a dis-
tributed system using RBAC. This HWDS approach uses hardware
that has previous been demonstrated as useful for several applica-
tion domains including access control, network packet routing, and
generic comparison-based integer search algorithms. We reproduce
experiments from prior work on distributed access enforcement
for RBAC systems, and we design and conduct new experiments
to evaluate HWDS-based access enforcement. Experimental data
show the HWDS cuts session initiation time by about a third com-
pared to existing solutions, while achieving similar performance
to authorize access requests. These results suggest that distributed
systems using RBAC could use HWDS-based access enforcement
to increase session throughput or to decrease the number of access
enforcement servers without losing performance.

Categories and Subject Descriptors

Security and privacy [Security in hardware]: Hardware security
implementation

Keywords

access control, enforcement, hardware data structures

1. INTRODUCTION
Large enterprises have tens of thousands of employees who are

distinct users that access tera- to peta-bytes of data composed of ob-
jects with tens to hundreds of thousands of distinct permissions [19].
Small businesses/enterprises have similar security needs as large

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SACMAT’14, June 25–27, 2014, London, Ontario, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2939-2/14/06 ...$15.00.

http://dx.doi.org/10.1145/2613087.2613096.

businesses, but at a smaller and more flexible scale from tens to
hundreds of users and hundreds to thousands of permissions. For
large or small enterprises, data security is big business as intellec-
tual property theft costs an estimated and growing 250 billion US
dollars per year [22]. Hardening enterprises from external attacks is
not sufficient, as over 85% of federal cases involving theft of trade
secrets were perpetrated by insiders (former employee or business
partner) [3]. Thus, protection mechanisms must control access to
proprietary data by users in such a way that the users can execute
their job functions without compromising the security of corporate
intellectual property. The prevalent solution for enterprise data se-
curity is to use role-based access control (RBAC) [11, 24] with a
client/server model. RBAC decouples users from permissions via
roles, which are the principals to whom authorization is granted to
access objects. A typical RBAC system will have about 3–4% as
many roles as users [25], so an enterprise with 100,000 employees
might use about 4000 roles. Although RBAC simplifies adminis-
tration by reducing the number of principals, the number of per-
missions can cause performance bottlenecks in the software data
structures used during access enforcement. We propose to enhance
access control data structures with fast, parallel hardware to accel-
erate permission checking for RBAC systems.

In this paper, we enhance client/server RBAC with a hardware
data structure (HWDS) that supports access control enforcement.
HWDSs exploit hardware parallelism to reduce the asymptotic com-
plexity of data structure operations, which can yield substantial
performance improvements compared with software implementa-
tions [6]. A problem with the scale of enterprise security is that cen-
tralized access control becomes a bottleneck for the performance
and availability of networked services, but centralization is viewed
as necessary to facilitate policy administration. Therefore, modern
systems divide access control into stages consisting of centralized
authentication and a mix of centralized and distributed authoriza-
tion and audit. (Audit happens off the critical path of access re-
quests.) Authorization is split further into access decision and en-
forcement; the former consults policy to construct an authorization
token, e.g. an access control list or capability, and the latter will
grant/deny access to protected resources based on the token pre-
sented during an access request. Enforcement in this setting needs
efficient mechanisms that can process authorizations without go-
ing to the centralized decision server; the solutions in prior work
on client/server RBAC, which we review in Section 5, focus on
caching, prefetching, and predicting authorizations.

Importantly, RBAC models use the notion of a session to permit
users to activate subsets of their permitted roles when requesting
an authorization, which supports good security practices such as
the principle of least privilege [23] while making RBAC a good
fit for client-server models such as the Common Open Policy Ser-

Figure 1: A client/server model based on the COPS standard ex-
tended with Secondary Decision Points.

vice (COPS) standard [14]. In typical client/server models, autho-
rizations are created at the Policy Decision Point (PDP), which re-
sponds to Policy Enforcement Points (PEPs) that request whether
or not to allow users to access protected resources. A common
approach to improve PEP performance is to cache authorizations
from the PDP so that repeated access requests may be enforced
directly by the PEP without inducing communication and compu-
tation overhead to query the PDP. Crampton et al. [10] proposed
adding a Secondary Decision Point (SDP) to cache and predict au-
thorizations, which the authors called precise and approximate au-
thorization recycling, respectively. Prediction (approximate recy-
cling) infers authorizations for access requests that miss the cache.
The architecture resulting from adding an SDP to the COPS model,
shown in Figure 1, distributes authorization while maintaining a
centralized policy. Wei et al. [28] show how to use the extended
model with RBAC.

Good access enforcement performance requires an SDP with a
high cache hit rate, no mis-predictions, and a low latency response
time. In this paper, we demonstrate such an SDP using an asso-
ciative array HWDS [5]. We implemented this HWDS-based SDP,
which we call the HWDS BitSet SDP, using the gem5 [4] proces-
sor simulator and a Java library; we describe our implementation
in Section 3. Our implementation enables performance evaluation
of the HWDS BitSet SDP using the dist-rbac-eval benchmark [18,
2]. We improved the benchmark by adding skewed distributions
of access requests and measurements of holistic SDP performance
including session initiation and destruction times. The software
library enables the SDP to use the pre-existing associative array
HWDS without modification to the hardware, and the potential for
commoditization together with good performance make the HWDS
BitSet SDP well-suited to replace software SDPs in enterprise-
scale RBAC deployments.

We evaluate the time efficiency of the HWDS BitSet SDP along
with two SDPs—access matrix and CPOL—from prior work using
the experiments described by Komlenovic et al. [18] to measure
SDP access request time. The prior work evaluated SDPs using
a series of experiments, which we reproduce to evaluate the new
HWDS BitSet SDP. Furthermore, we describe and use new experi-
ments to evaluate the effect on access request time due to the num-
ber and skewness in the distribution of access requests made during
a session; see Section 4.

The experimental results show that the HWDS BitSet SDP typ-
ically is more efficient than the existing work for session initation
and destruction, while remaining competitive for access request

time. For workloads with 2 to 15 sessions having 100 roles, 250
permissions, 4 active roles per session, and each role has about 10
permissions, the session initiation time of the HWDS SDP has a
speedup between 0.8 to 4.7 compared to the access matrix, and
speedup of 1.46 to 2.61 over CPOL. Session destruction time for
the HWDS SDP has speedup between 1.09 and 2.01 for access ma-
trix, and 5.11 to 6.06 for CPOL. Averaged across these workloads,
the time to initiate a session with the HWDS was 210.4 microsec-
onds (µs) with standard deviation of 36, whereas the CPOL and
access matrix SDPs took about 351.3 µs and 319.8 µs with stan-
dard deviations of 6.65 and 131.38, respectively. The averaged per-
session destruction time was 30.3 µs for the HWDS with standard
deviation 1.9, with CPOL at 165 µs and standard deviation 2.1, and
the access matrix at 40.2 µs and 9.9 standard deviation. Note that
some costs of SDP destruction go to garbage collection, which was
not included in any of the reported data. The mean access time of
the HWDS was between 0.15–0.6 µs, with CPOL taking 0.19–1.47
µs and the access matrix 0.15–0.49 µs. The results also indicate
that when data are more skewed the HWDS BitSet SDP’s access
time is even more competitive.

The HWDS SDP can open and close sessions at a greater through-
put than the other SDPs without losing access request time per-
formance. A greater session throughput can be used to increase
the number of active sessions each SDP can handle, which permits
scaling up the number of users or scaling down the number of SDP
servers. The advantage of a HWDS approach is that a HWDS can
be used generically across multiple application domains in much
the same way as software uses libraries containing optimized data
structure implementations. The same HWDS that we use has also
been used in part to improve SELinux performance [12] and net-
work packet routing [21]. By integrating the HWDS support with
software libraries, existing applications such as web browsers and
physics simulators could benefit simply by linking to the modified
library [5]. The HWDS approach is appealing because it improves
data structure performance without requiring application- or prob-
lem domain-specific custom hardware designs.

This work makes three contributions. First, we show how to
use a HWDS for distributed RBAC access enforcement. Second,
we reproduce some of the experiments presented by Komlenovic
et al. [18] and discuss how our findings compare with the previous
results. Third, we describe new experiments and present results
related to session timing results, skewness in the probability of ac-
cess requests, and duration of sessions in terms of number of ac-
cess requests made. The experimental results indicate the HWDS
approach is a promising alternative to the best-performing software
implementations of distributed access enforcement.

2. HWDS FOR DISTRIBUTED RBAC
The basic requirement of an SDP is to check access requests to

determine whether a given session has the authorization (permis-
sions) to access the requested resource. Associated with a session
lifetime, the SDP must initialize and destroy session-specific data,
i.e. the portion of the data structure related to the session. An
SDP also must support updating its data structures to reflect any
administrative changes that are made in the PDP’s policy. These re-
quirements motivate an associative array HWDS that stores a map
between session identifiers and permissions as an SDP. An associa-
tive array, or map, is a data structure that organizes data to support
efficient searching, or finding the node with a specific key from a
set of (key, value) nodes. The specified key is the argument to the
search [17]. Usual operations on an associative array are:

• insert: adds/replaces a key-value node

Figure 2: An associative array implemented in hardware. Keys are
stored in the CAM, values are stored in the RAM.

• extract: removes a node

• search: finds a node using the given argument

An exact search returns the node with the same key as the argument
if it exists. The skewness of a search is a measure of the asymmetry
of the probability distribution of the argument. In this paper, we
consider exact search with varying skewness.

The search operation supports access requests, and inserting a
node with the same key as an existing node supports modifications
to the permissions that a session can access in response to admin-
istrative changes. Thus, an associative array is a good candidate
for an SDP implementation. An associative array can be imple-
mented as a HWDS that supports numerical key-value pairs using
a content-addressable memory (CAM) with a RAM of equal size,
as shown in Figure 2. This HWDS has been used previously by oth-
ers [21, 12, 5], which we discuss further in Section 5. CAMs are
addressed by the stored data word instead of memory address, so
given a data word, the CAM returns the memory address contain-
ing that word. To insert a key-value node, the map HWDS stores
the key in the CAM and the value in the RAM at the same address
in both memories. Extract and search operations use the argument
to find the address of the value in the RAM and remove or return
it respectively. The HWDS uses an extra 1 bit of RAM per data
word as metadata to indicate whether that word is storing a value
or garbage.

The advantages of a HWDS are parallelism and applicability to
multiple application domains due to the generic hardware-software
interface offered by data structure operations. Hardware can insert
to a sorted structure faster than software because of the advantage
of parallel comparisons. To insert a new node, a tree-based soft-
ware data structure may need to traverse the depth of the tree, com-
paring the new node with the tree’s node at each level. Hardware
can compare the new node in parallel with all of the stored nodes.
Similar performance improvements exist for other common data
structure operations, such as deleting or searching for a node.

A HWDS reduces operation execution times to a small, fixed la-
tency similar to a cache hit, but only for a data structure that has a
maximum size less than HWDS capacity. Although software can
request more storage for large data structures, a HWDS cannot re-
quest more capacity. The solution for a HWDS is to use runtime
overflow management [5] so that arbitrary-sized data structures can
utilize the HWDS resources. Overflow management consists of
handling overflow and underflow conditions during HWDS opera-
tions. An overflow occurs when the HWDS has no more available
space for an insertion. Underflow occurs when a HWDS operation
misses in the hardware, for example an extract or search does not
find the node in the HWDS.

2.1 HWDS BitSet SDP
We assume that a session identifier can be represented internally

by an SDP as an opaque integer, and that a set of permissions
map resources identified by integers between 0 and n inclusive to
boolean values (true, false). The logical choice for a key-value pair

for an SDP is to use the session identifier as a key, and some rep-
resentation of permissions as a value. Although the map HWDS
can implement an SDP by storing a pointer to a permission set in
main memory as the value, the overhead of managing the HWDS
and accessing main memory nullifies the performance advantage
of the hardware. Another approach for using the map HWDS is to
store a permission set directly in the RAM as a bitset (a vector of
bits that represent the permissions of a session). This approach is
problematic when the number of permissions is large, unknown a
priori, or cannot be represented as a dense bitset.

Our approach, which we call HWDS BitSet SDP, is to create a
session identifier and permission bitset for each session. The bitset
is split into parts equal to the size of the data word that can be stored
in the HWDS RAM. Then each part becomes a value, and the key
is a combination of the session identifier and the offset of the part in
the bitset. The key must be split between the session identifier and
an offset into the permission bit vector. We choose to split the key
in half, which is an arbitrary choice that users of the HWDS BitSet
SDP can change by allocating more bits to the session identifier
or the offset. The example in Section 2.2 uses an 8-bit key and
value, which allows up to 27 permission identifiers (24 offsets, and
8 permission bits per offset) and up to 24 session identifiers. Our
implementation uses a 64-bit value and 32-bit keys, so there can be
222 permission identifiers (216 offsets and 64 permission bits) and
216 session identifiers.

When a session is initiated, all of the permissions for the active
roles of the session are converted to a bitset, and then the bitset is
divided into values. Each value is inserted to the HWDS with a key
equal to the concatenation of the session identifier and the offset of
the value in the bitset, padded with leading zeroes so the session
identifier can be located correctly. The cost to initiate a session de-
pends on how many values are created from the permissions, and
is at most the number of offsets times the cost of a HWDS insert.
However, when permissions exhibit good spatial locality in the bit-
set, the cost can be much lower, for example just one insert can
represent up to 64 active permissions.

For an access request, the SDP computes the offset of the re-
quested permission identifier by dividing the identifier by the size
of the stored values. An argument for a HWDS search is con-
structed by concatenating the session identifier with the computed
offset. The permission identifier’s bit position is calculated by
masking off bits in the identifier that are in positions greater than
the size of the stored values. The bit at the calculated bit posi-
tion is then checked in the return value from the HWDS search to
determine whether the requested permission is in the session’s per-
mission bitset.

A session is destroyed by iterating over all possible offsets and
extracting the node with a key equal to the session identifier con-
catenated with each offset. The cost to destroy a session can be
quite large if the session has a large set of active permissions, so
to reduce this cost the SDP tracks the maximum offset used in a
session. During session destruction the number of HWDS extracts
is equal to the maximum offset.

Overflow can occur when the number of HWDS inserts exceeds
the capacity of the HWDS. The cost of overflow affects session ini-
tiation time to handle the overflow, and may affect access request
or session destruction time to deal with associated underflows. Our
implementation can hold up to 128 nodes before inducing overflow.
A node permits one offset of 64 permissions per session, so without
overflow a 128-node HWDS can hold 128 sessions with permis-
sions ranging from 0–63, or 1 session with permission identifiers
spanning from 0–8191. Overflow handling allows more sessions or
permissions, but at some cost to move data from the HWDS to the

overflow data structure.
Our approach to overflow management is interposition-based [5]

similar to how Chandra and Sinnen [9] handle overflow for their
priority queue HWDS. With interposition-based overflow manage-
ment, HWDS operations are checked by software. If an operation
causes an overflow, underflow, or any other problem, the software
invokes a handler that corrects the problem and either emulates or
replays the operation.

Overflow can be governed by different policies about which nodes
to move between the HWDS and overflow storage. The associa-
tive array HWDS we use supports three policies for spilling over-
flow nodes from the hardware: least-recently used (LRU), least-
frequently used, and priority-ranked by integer comparison of keys.
The HWDS BitSet SDP’s overflow handler moves half of the nodes
from the HWDS to a software implementation of an associative
array using the LRU policy. For underflow, the handler passes
through the operation to the software associative array: for a search,
if the node is found in the software data structure, that node is re-
moved and re-inserted to the HWDS. The policies governing over-
flow and underflow were chosen to exploit temporal locality.

Discussion.
We considered several alternatives before settling on the design

of the HWDS BitSet SDP. The primary consideration for this de-
sign was to avoid introducing custom hardware modifications to
the existing HWDS logic. We considered loading each permis-
sion separately into the HWDS, but sessions with a lot of permis-
sions would put pressure on the HWDS capacity while inducing
high session initiation and destruction costs. We also considered
loading a single pointer reference to a permission bit-vector in the
HWDS, but we found the overhead to fetch the bit-vector from
memory and then compute the permission offset and mask led to
poor performance in small or sparse sets of permissions. Load-
ing the HWDS with chunks of the bit vector offers a good com-
promise between search speed and HWDS utilization. An alter-
native to interposition-based overflow management is exception-
based, which relies on the hardware to check for error conditions
and raise an exception in case of a problem. We found that the
cost of passing an exception from hardware through the operating
system into the JVM and finally to the Java application was pro-
hibitive, so we used interposition exclusively.

2.2 RBAC Example
Figure 3 depicts an RBAC policy and an example of HWDS Bit-

Set SDP operations. Although our implementation uses 64-bit val-
ues and 32-bits keys, this example uses 8-bit values and keys for
clarity.

Suppose Alice wants to approve a time card and enter her time
card. She will start by initiating a session activating the roles of
Manager and Employee. The PEP will forward this request through
the SDP to the PDP, which responds with a new session identifier,
say 3, and the set of permissions for the role Manager, which is
{12, 6, 10}. The HWDS BitSet SDP will use the returned session
identifier and permissions as follows. First, the set of permissions
is converted to a vector of bits with a set bit at each position of
the allowed permissions: 0001 0100 0100 0000. This bit vector
is then split into multiple values, 0001 0100 and 0100 0000 corre-
sponding to the two 8-bit values that compose the bit vector. The
offset of the values are 0 and 1, respectively, and recall that the ses-
sion identifier is 4, so the keys are 1000 and 1001. Thus, the SDP
inserts two nodes into the HWDS: insert(1000, 01000000) and in-
sert(1001, 00010100). The SDP also returns the session identifier
(4) to the PEP, which forwards the identifier to the user.

Figure 3: An example RBAC policy and a session initiation and
access request using the HWDS BitSet SDP. Note that the session
identifier is 3, and the key is split into 4 bits for the session identifier
and 4 bits for the offset in the permission bit-vector.

Now that Alice has opened a session, she can approve a time
card. She issues a request to the PEP to access the resource associ-
ated with approving time cards. The PEP translates her request into
an access request to the SDP for session identifier 4 and permission
12. The SDP calculates the offset of the requested permission by
dividing 12 / 8 and discarding the remainder, getting an offset of
1. The SDP then computes the argument by shifting the session
identifier and merging it with the offset, that is the SDP executes
search(1001) and gets back the 8-bit value (00010100) associated
with offset 1. The SDP then computes the bit position of permission
12 in that value by masking off (12 & 7), obtaining 4. (If instead
Alice had requested to enter her time card—permission 6—the off-
set would be 0 and the bit position of the permission in the returned
value would be 6.) Finally, the SDP checks if the returned value
has a set bit at position 4, which it does, so the SDP responds to
the PEP that the access should be granted. The PEP allows Alice
to approve time cards.

3. EXPERIMENTAL SETUP
We implemented the associative array HWDS in the gem5 simu-

lator [4]. Our implementation introduces a new gem5op—a pseudo
instruction that executes atomically and non-speculatively—that soft-
ware executes to perform a HWDS operation. We wrote a software
library that encapsulates HWDS operations in a Java class using the
Java Native Interface to execute gem5ops. The library and the un-
derlying HWDS use 32-bit keys and 64-bit values, and can model
arbitrary-sized HWDSs; we use only a 128-node HWDS, i.e. 128
key-value pairs can be stored in the hardware at a time. The library
accepts the size parameter in its class constructor, which programs
the size into the HWDS during its initialization. Every HWDS op-
eration returns a value in a register that the library checks for error
codes that signal the library to handle the problems of overflow and
underflow as described in Section 2.1. The library uses a Java Col-
lections TreeMap as the software associative array for overflow.

3.1 Benchmark
We adapted the dist-rbac-eval benchmark for RBAC access en-

forcement described by Komlenovic et al. [18], which the authors

made available online [2]. This benchmark evaluates the time-
efficiency of SDP-based access enforcement for RBAC. An RBAC
policy is encoded as a directed graph by the benchmark, which
calls a specific instance of a policy an RBAC configuration. For
each configuration, multiple session profiles can be created, each of
which is a sequence of instructions comprising session initations,
access requests, and session destructions. The benchmark executes
the session profile over the RBAC configuration for an SDP imple-
mentation, six of which are provided from the prior work by Kom-
lenovic et al. [18]: access matrix, Bloom filter, cascade Bloom,
CPOL, directed graph, and authorization recycling.

3.2 Session Profile Modifications
We introduce a new parameter for session profiles that controls

the access request distribution. The default behavior for the un-
modified benchmark is to choose a session at random and generate
sequentially-ordered access requests for permissions available to
that session. Access requests are generated until the limit on the
number of access checks is reached. If all of the permissions for a
session have been requested, a new session is activated and access
requests are issued until the limit is reached. We introduce a new
parameter α to the class such that when α = 0 the permissions
used in access requests are chosen uniformly at random, and when
α = 1.0 the permissions follow Zipf’s law [17].

Zipf’s law, or Zipf’s distribution, is a power law distribution that,
applied to access requests, means the probability of the nth most
common resource (permission) is requested with probability ap-
proximately equal to 1/n. This distribution originated from obser-
vations made about the popularity of words in languages, and has
been observed in web document popularity [8]. When using the
new parameter, access requests are made at random according to
the skewed distribution across all active sessions and permissions
until the limit on access requests is reached. The reason to intro-
duce the new parameter α is that some data structures optimize
for skewed search patterns, for example the splay tree is a self-
adjusting binary tree that moves frequently-accessed nodes closer
to the root. Indeed, many cache-like structures will do best on data
that are skewed. Thus, we aim to quantify whether some SDPs may
do better when access requests are skewed.

3.3 Benchmark Modifications
We modified the benchmark to reduce its execution time so that

we could simulate realistic workloads in a timely manner. Impor-
tantly, the benchmark was changed to instantiate only one PDP and
to pre-compute the PDP’s responses by running through one iter-
ation of the benchmark’s workload before beginning the iterations
that time the SDP. These changes remove the overhead of PDP in-
stantiation and policy evaluation from the benchmark’s workload
loop, which substantially reduced the benchmark runtime without
sacrificing accurate timing of SDP access enforcement; we validate
the timing is correct by reproducing experiments conducted in the
prior work. We estimate these changes resulted in a speedup of
about 7–10 in the time to run the benchmark. The time for one
run of the benchmark in gem5 for the three SDPs we used was re-
duced from about a day to just over 3 hours, which allows run-
ning the benchmark multiple times with different configurations
and session profiles as needed by the experiments we conducted.
Modifications to the PDP required rewriting the initiation code for
the SDPs. Since the access matrix and CPOL SDPs were the most
time-efficient in the prior work, we chose to focus on those two
SDPs along with our implementation of the HWDS BitSet SDP.

The focus in the literature on mean access time as a proxy for
SDP performance is misleading in case an SDP has extremely poor

session initiation and destruction times. Many data structures can
optimize the search path at the expense of the insert/delete path,
for example a balanced search tree does extra work to keep the tree
height in balance during insertions and deletions so that searches
achieve logarithmic asymptotic time complexity. The time it takes
to start a session can negatively impact a user’s experience espe-
cially if the delay is noticeable. Therefore, we aim to quantify the
effect of the SDP on session initiation and destruction. To do so, we
added timing measurements to the benchmark for session initiation
and destruction that measure the time needed by the PDP to con-
struct and destroy session authorizations for the SDP. By measuring
the initiation and destruction costs for the SDP data structure, the
benchmark now estimates the entire cost of a particular SDP im-
plementation.

3.4 SDP Implementation
We implemented the HWDS BitSet SDP in the dist-rbac-eval

benchmark using our gem5 implementation of the associative array
HWDS. The HWDS BitSet SDP works as described in Section 2.
A list of permissions associated with a session is converted into a
Java BitSet by the PDP, which returns the BitSet and session iden-
tifier to the SDP. The SDP extracts and inserts each 64-bit chunk of
the BitSet into the HWDS with a key constructed from the session
identifier and offset of the chunk. An access request computes the
offset for a requested permission and searches the HWDS using an
argument constructed from the session identifier and offset. The re-
turn value is checked at the bit position of the requested permission
and access is granted (denied) if the bit is set (clear). A session is
destroyed by extracting keys for every offset for the session.

3.5 Methodology
The hardware platform is a simulated system using the gem5

simulator with the timing CPU, which is a simplified processor
core that models the timing of memory accesses and cache, but
it does not include detailed pipeline interactions or out-of-order ex-
ecution. For the gem5 platform, we use the X86 full system sim-
ulation with 1 core and 512 MB of RAM, 64K data cache, 32K
instruction cache, running at 500 MHz, with Linux 2.6.28.4, java
version 1.7.0_51, and the OpenJDK VM. We set the VM memory
heap size to 512 MB. We use this platform to evaluate the HWDS
BitSet SDP.

Our methodology for executing the benchmark is similar to that
of Komlenovic et al [18], but we did make some minor variations.
This methodology is inspired by the work of Georges et al. [13],
who present a detailed analysis of Java performance analysis and
experimental design with Java. Most important, Java programs ex-
hibit two primary phases with distinct performance characteristics,
a startup phase and a steady-state phase. Experiments that mea-
sure performance in Java must take into consideration which phase
to observe. We are interested in the steady-state performance of
the SDP, therefore we use the four-step methodology proposed by
Georges et al [13]. However, we do not run the VM multiple times
because executing the benchmark on the same inputs and param-
eters gives the same timing results in the simulator, so there is no
variance between VM invocations. Each invocation runs at most 25
iterations of the session profile for the benchmark. The first 16 iter-
ations are ignored, and the benchmark terminates when 5 iterations
in a row achieve a mean access time with a coefficient of varia-
tion (CoV) less than 0.02. (CoV is equal to the sample standard
deviation divided by the sample mean.) If the CoV of 0.02 is not
achieved within 25 iterations, the benchmark terminates and reports
the 5 consecutive iterations with the smallest CoV. We record the
access time along with the session initiation and destruction times

for these 5 iterations for each VM invocation. The first 16 iterations
are ignored because we found that the variation between iterations
is small even in the startup phase, which causes a small CoV that
terminates the benchmark before it reaches the steady-state.

In the experimental results, we report mean access time perfor-
mance that was calculated as the mean of the recorded access times
across the repeated VM invocations. We also compute and report
the 95% confidence interval for each mean. For the initiation and
destruction times, we calculate the average of the times reported
across all VM invocation, and we discard any measurement that
is outside of 1.5 times the interquartile range. The reason to dis-
card these outliers is that the initiation and destruction times in the
steady-state are still affected by Java-induced variations, especially
garbage collection. Discarding the outliers gives a more accurate
estimate for the performance of session initiation and destruction
without garbage collection.

4. EXPERIMENTS AND RESULTS
We conducted a series of experiments using the experimental

setup described in Section 3.

4.1 Reproduced Experiments
The first set of experiments aim to reproduce those presented

by Komlenovic et al. [18] using the benchmark. We reproduce the
prior work in order to validate the modifications we made to session
profiles and the benchmark workload, and also to determine use-
ful parameters for executing the benchmark on the gem5 platform.
We chose the parameters used in these reproduced experiments to
match the parameters of the prior work.

We attempted to recreate the RBAC configurations and session
profiles for the inter- and intra-session experiments described in
the prior work. An inter-session experiment consists of multiple
benchmark executions with increasing numbers of sessions for each
execution. For the inter-session experiment configurations, we set
the number of users to 25, roles to 100, permissions to 250, roles
per user to 4, and roles per permission to 3. The benchmark is
agnostic to the number of users, since each user can generate mul-
tiple sessions in parallel by activating different sets of roles and
permissions. 100 roles is reasonable for an organization with ap-
proximately 2500 users considering 4% ratio of users to roles.

An intra-session experiment executes the benchmark multiple
times for the same number of sessions and fixed number of permis-
sions with varying roles, and fixed number of roles with varying
permissions. For the intra-session experiment configurations, we
set the number of sessions to 15, users to 2, and varied the roles
and permissions.

The inter-session experiments investigate SDP performance as
parameters related to multiple sessions changes, whereas the intra-
session experiments investigate SDP performance with fixed ses-
sion parameters and varying other RBAC configuration and session
parameters that can affect performance.

The results from running the reproduced experiments for the ac-
cess matrix and CPOL SDPs are presented in the appendix. Using
the same configurations and session profiles as in the reproduced
experiments, we also measured session initiation and destruction
times as described in Section 3.5. The results for session initiation
and destruction times are in the appendix.

To evaluate the effect of skewness on SDP performance, we gen-
erated session profiles with the parameter α equal to 0, 0.25, 0.5,
0.75, and 1.0. We found no statistically significant difference in
mean access time between the access matrix and CPOL SDPs with
increasing access request skewness; that is, the mean confidence in-
tervals overlap even for the extreme cases of α = 0.0 and α = 1.0.

We attribute this lack of difference to the benchmark’s SDP being
sufficiently small enough to fit into cache that the access pattern
has no effect on performance since these two SDPs both prefetch
the entire permissions data needed for authorizations.

4.2 HWDS BitSet SDP
To evaluate the effectiveness of the HWDS BitSet SDP, we con-

ducted similar experiments to those described above. For these ex-
periments, we focused on the inter-session behavior of the HWDS
BitSet SDP, and the intra-session behavior for the increasing num-
ber of permissions.

As the number of sessions and permissions increase, the expec-
tation is that the HWDS BitSet SDP performance will degrade due
to overflow handling. In particular, the threshold for overflowing
a HWDS is when the number of inserted nodes exceeds the num-
ber of sessions times the maximum permission identifier divided by
64. So with 250 permissions, overflow occurs when there are more
than 32 sessions. We therefore varied the number of sessions up to
60 to observe the effect of overflow. 60 sessions requires approx-
imately double the capacity of the HWDS. Each session generates
1000 access requests and we used α equal to 0.0 and 1.0.

We executed the benchmark using the inter-session profiles and
access matrix, CPOL, and HWDS BitSet SDPs in the gem5 simu-
lator. Each session generates 1000 access requests and we investi-
gated both α equal to 0.0 and 1.0. Figure 4 shows the results for
these benchmark executions. The total session initiation time av-
eraged across the steady-state iterations used to compute the mean
access time is presented in Figure 4a for α = 0.0 and in Figure 4d
for α = 1.0. Figures 4.2 and 4.2 depict the mean access time for
α = 0.0 and α = 1.0 respectively. and Figures 4c and 4f shows
the session destruction time.

The mean access time and session destruction time for the HWDS
BitSet SDP and the access matrix track closely, and they both out-
perform CPOL. Session initiation time with the HWDS BitSet SDP
is about one-third less than with CPOL, and as the sessions increase
the problems with access matrix session initiation are evidenced by
the divergence between the HWDS BitSet and access matrix initi-
ation times. With 15 sessions, the HWDS BitSet session initiation
time is 28% less than the access matrix SDP’s time, and the gap
widens as the number of sessions increases. The per-session de-
struction time in the inter-session experiments was between 34.6–
64.2 µs for the access matrix, 27–32.1 µs for the HWDS, and 163–
170 µs for CPOL.

Even in the presence of HWDS overflow, the performance of the
HWDS BitSet SDP is better than the software SDPs. Overflow
occurs in the inter-session profiles when the number of sessions
exceeds 32, and in the intra-session profiles when the number of
permissions exceeds 546. When there is overflow, the HWDS Bit-
Set SDP performs better with skewed access requests (Figure 4.2)
than with uniform access requests (Figure 4.2), because the LRU
overflow handling exploits temporal locality.

In the reproduced experiments, we found that the access matrix
suffers heavy performance degradation for session initiation with
the intra-session profiles, and it especially scales poorly with the
increasing numbers of permissions. Thus, we executed the intra-
session profiles using only the CPOL and HWDS BitSet SDPs in
the gem5 simulator. Neither of these SDPs are affected by changing
the number of roles, so the intra-session profiles use 100 roles and
take the number of permissions from {100, 500, 700}. With 700
permissions, 15 sessions, and 128-node capacity, the HWDS BitSet
SDP overflows 37 nodes.

Figure 5 shows the mean access time, average total session initi-
ation time, and average total session destruction time as the number

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10 20 30 40 50 60

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(a) Initiation time, α = 0.0.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 20 30 40 50 60

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(b) Mean access time, α = 0.0.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

10 20 30 40 50 60

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(c) Destruction time, α = 0.0.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

10 20 30 40 50 60

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(d) Initiation time, α = 1.0.

 0

 2

 4

 6

 8

 10

 12

 14

 16

10 20 30 40 50 60

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(e) Mean access time, α = 1.0.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

10 20 30 40 50 60

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL
HWDS BitSet

(f) Destruction time, α = 1.0.

Figure 4: Inter-session results

 0

 1

 2

 3

 4

 5

 6

100 500 700

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Permissions

CPOL
HWDS BitSet

(a) Mean access time

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

100 500 700

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Permissions

CPOL
HWDS BitSet

(b) Session initiation time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

100 500 700

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Permissions

CPOL
HWDS BitSet

(c) Session destruction time

Figure 5: Intra-session results for varying permissions using gem5.

of permissions changes. For these experiments, we used 1000 ac-
cess requests per session and set α equal to 0.0. Figure 5a shows
that the HWDS BitSet outperforms CPOL in terms of access check
time. The mean access time for these data exhibit large variance for
CPOL, none of which resulted with a CoV less than 0.02, though
all of the HWDS BitSet measurements do. Such large variance
indicates the experiment does not reach a stable steady-state when
using the CPOL SDP. The session initiation time of the HWDS Bit-
Set SDP scales worse as the number of permissions increases, since
more permissions causes increased overflow while constructing the
SDP data structure. Figure 5 shows how the HWDS BitSet SDP
compares with the CPOL SDP for initiation time when scaling the
number of permissions; the improvement is 52% at 100 permis-
sions but only about 15% at 700 permissions.

The experimental results suggest that the HWDS BitSet SDP is a
good choice for a high-performing SDP. We found that the HWDS
BitSet performs comparably to the best SDP implementation for
mean access time and session destruction, and the HWDS BitSet
outperforms the prior work for session initiation time in all of the
experiments, even those which induce overflow handling.

5. RELATED WORK
Access control solutions in commercial distributed systems—

for example, IBM Tivoli [15], Oracle Entitlements Server [1], and
CA SiteMinder Web Access Manager [16]—replicate policy to im-
prove access enforcement performance when authorization is di-
vided. Replication reduces the bottleneck of a centralized policy,
but at the increased cost to keep the replicas consistent. Autho-
rization still incurs computation time overhead to query the policy
database, which others have argued can be the limiting factor in
access request throughput [7]. Furthermore, communication over-
head will degrade authorization performance unless each enforce-
ment point has its own replica.

Policy replication is complementary to other approaches that im-
prove the time efficiency of access enforcement in distributed sys-
tems, namely caching, predicting, and prefetching. Caching au-
thorizations is a well-known and widely-deployed mechanism to
improve the performance of access enforcement [26, 16, 1]. Autho-
rization caching works well when access requests are repetitive and
exhibit good temporal locality. In case access requests are not re-
peated exactly, Crampton et al. [10] proposed the secondary and ap-

proximate authorization model (SAAM) introducing approximate
authorization recycling. Approximate recycling predicts an autho-
rization without consulting the PDP during an access request. Wei
et al. [28, 29] applied the SAAM to RBAC. Good performance for
authorization recycling depends heavily on cache warmness, which
can be a problem especially for short duration sessions or access re-
quests with low temporal locality. To circumvent the problem of a
cold cache, Tripunitara and Carbunar [27] proposed implementing
an SDP using a push model that prefetches authorizations into the
SDP. The authors proposed the novel cascade Bloom filter as a data
structure for caching authorizations. Komlenovic et al. [18] pro-
posed and implemented a Java benchmark to evaluate implemen-
tations of 6 SDPs for RBAC. The 6 SDPs included reproductions
of the above SAAM authorization recycling and cascade Bloom
filter, along with new implementations using a directed graph rep-
resentation, access matrix encoding derived from the work of Liu et
al [20], Bloom filter, and a re-implementation of CPOL [7]. Other
than authorization recycling, these SDPs use the same push model
as Tripunitara and Carbunar. The HWDS BitSet SDP adopts the
push model to provide a prefetched authorization cache at the SDP.

The HWDS BitSet SDP also extends some of the prior work in
the area of hardware support for access control and hardware sup-
port for data structures. Our implementation of the associative ar-
ray HWDS is inspired by the map HWDS used by Bloom [5] for
generic search and Fiorin et al [12]—see below. The Java interface
and implementation of overflow handling we use is similar to that
used by Chandra and Sinnen [9] for their priority queue HWDS.
The novelty of our work, however, is not in the design of a HWDS
or its overflow handling, but rather in applying and evaluating the
HWDS to the domain of RBAC and interfacing the HWDS with the
Java environment of the access enforcement benchmark.

Hardware support for access control is not new—indeed, most
modern systems use CAM hardware with memory protection bits
to implement the translation lookaside buffer, which does virtual to
physical memory address translation. Even hardware support for
RBAC has been proposed by Fiorin et al. for improving the per-
formance of SELinux by replacing the access vector cache with a
similar hardware design as the associative array HWDS [12]. Our
work differs from the prior work on hardware-enhanced access con-
trol by using only the HWDS as the hardware component, and the
rest of the access enforcement is implemented in software.

6. CONCLUSION
In this paper, we presented a novel SDP, the HWDS BitSet SDP,

that uses an associative array HWDS to store permissions in bit
vectors. We evaluated this SDP using an open-source benchmark
for distributed access enforcement, and we found that the time-
efficiency of the HWDS BitSet SDP is competitive with the best
SDP implementations provided with the benchmark. By includ-
ing the cost of session initiation time in the benchmark’s measure-
ments we also found that the HWDS SDP takes much less time—
about one-third less—to instantiate the data structure for caching
session authorizations. The experiments we conducted included
reproductions of a prior study [18] using the benchmark, and new
experiments we designed that investigate the effect on access re-
quest times due to skewed probability distributions in access re-
quest patterns and to duration of sessions in terms of numbers of
access requests. The experimental results for the reproduced exper-
iments are commensurate to those reported by the prior work. We
found that skewness in access requests does not affect mean access
time for the access matrix and CPOL SDPs. However, the num-
ber of access requests made in a session has a strong influence on
SDP performance—especially of CPOL—with larger access times

observed for shorter sessions, which we attribute to not reaching
the best steady-state phase fast enough. These experimental re-
sults suggest that the HWDS BitSet SDP is a promising approach
to improve the performance of distributed access enforcement in a
client-server RBAC system.

While this paper makes a step in enhancing access control with
hardware support, future work can further investigate how the HWDS
approach can be used to improve access enforcement. Some areas
that remain open to explore include the hardware design space, new
HWDS operations that can support more efficient access enforce-
ment, and applying the HWDS approach to other access control
domains such as in single-user systems. In terms of the hardware
design, the CAM-based HWDS is power-hungry and does not scale
well beyond the 128-entry size we modeled in this paper. Alterna-
tive HWDS designs could scale better to larger capacities without
sacrificing the performance advantages of hardware parallelism.
Furthermore, instructions could be added to the HWDS that would
benefit its use for access enforcement: an operation that can ex-
tract all of the nodes with the same session by matching a subset,
or mask, of the key would reduce the cost of session destruction to
the time needed to execute a single HWDS operation; operations to
audit the use of the HWDS would benefit practical deployments by
making accountability part of using the hardware; and operations
that divide an array into multiple key-value nodes automatically
would reduce some of the costs associated with loading permission
identifiers into the HWDS.

7. ACKNOWLEDGMENTS
The authors are supported in part by NSF CNS-0934725. The

authors thank the reviewers and shepherd, Mahesh Tripunitara, for
helping to improve the presentation of our work. The modified
benchmark source code and experimental harness we used is avail-
able at https://github.com/gedare/dist-rbac-eval/tree/SACMAT14

8. REFERENCES

[1] Fine grained authorization: Technical insights for using
oracle entitlements server. Technical report, Oracle, 2012.

[2] dist-rbac-eval - a platform for assessing approaches to
distributed role-based access control (RBAC) enforcement
https://code.google.com/p/dist-rbac-eval/, 2014.

[3] D. S. Almeling, D. W. Snyder, M. Sapoznikow, W. E.
McCollum, and J. Weader. A statistical analysis of trade
secret litigation in federal courts. Gonzaga Law Review,
45(2):291–334, 2010.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood. The gem5 simulator. SIGARCH
Comput. Archit. News, 39(2):1–7, Aug. 2011.

[5] G. Bloom. Operating System Support for Shared Hardware

Data Structures. PhD thesis, The George Washington
University, Jan. 2013.

[6] G. Bloom, G. Parmer, B. Narahari, and R. Simha. Shared
hardware data structures for hard real-time systems. In
Proceedings of the tenth ACM international conference on

Embedded software, EMSOFT ’12, pages 133–142,
Tampere, Finland, 2012. ACM.

[7] K. Borders, X. Zhao, and A. Prakash. CPOL:
high-performance policy evaluation. In Proceedings of the

12th ACM Conference on Computer and Communications

Security, CCS ’05, pages 147–157, Alexandria, VA, 2005.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: evidence and
implications. In IEEE INFOCOM ’99. Eighteenth Annual

Joint Conference of the IEEE Computer and

Communications Societies. Proceedings, pages 126–134,
New York, NY, Mar. 1999.

[9] R. Chandra and O. Sinnen. Improving application
performance with hardware data structures. In 2010 IEEE

International Symposium on Parallel Distributed Processing,

Workshops and Phd Forum (IPDPSW), pages 1–4, Atlanta,
GA, USA, Apr. 2010.

[10] J. Crampton, W. Leung, and K. Beznosov. The secondary
and approximate authorization model and its application to
bell-LaPadula policies. In Proceedings of the Eleventh ACM

Symposium on Access Control Models and Technologies,
SACMAT ’06, pages 111–120, Lake Tahoe, CA, 2006.

[11] D. F. Ferraiolo and D. R. Kuhn. Role-based access controls.
pages 554–563, Baltimore, MD, Oct. 1992.

[12] L. Fiorin, A. Ferrante, K. Padarnitsas, and F. Regazzoni.
Security enhanced linux on embedded systems: A
hardware-accelerated implementation. In Design Automation

Conference (ASP-DAC), 2012 17th Asia and South Pacific,
pages 29–34, Sydney, NSW, 2012.

[13] A. Georges, D. Buytaert, and L. Eeckhout. Statistically
rigorous java performance evaluation. In Proceedings of the

22Nd Annual ACM SIGPLAN Conference on Object-oriented

Programming Systems and Applications, OOPSLA ’07,
pages 57–76, Montreal, Quebec, Canada, 2007. ACM.

[14] Jim Boyle, Ron Cohen, David Durham, Raju Rajan, Shai
Herzog, and Arun Sastry. The COPS (common open policy
service) protocol. Technical Report 2748, IETF, Jan. 2000.

[15] G. Karjoth. Access control with IBM tivoli access manager.
ACM Trans. Inf. Syst. Secur., 6(2):232–257, May 2003.

[16] Kire Terzievski, Steven Turvey, and Matt Tett. CA WAM
solution hundred million user test. Technical Report 080202,
Enex TestLab, Jan. 2009.

[17] D. E. Knuth. The art of computer programming, volume 3:
(2nd ed.) sorting and searching. Addison Wesley Longman
Publishing Co., Inc., 1998.

[18] M. Komlenovic, M. Tripunitara, and T. Zitouni. An empirical
assessment of approaches to distributed enforcement in
role-based access control (RBAC). In Proceedings of the first

ACM conference on Data and application security and

privacy, CODASPY ’11, pages 121–132, San Antonio, TX,
USA, 2011. ACM.

[19] Laura DuBois and Natalya Yezhkova. Distinctions between
SMB and enterprise requirements for protection, archiving,
and recovery. Technical report, IDC, Framingham, MA,
USA, Apr. 2009.

[20] Y. A. Liu, C. Wang, M. Gorbovitski, T. Rothamel, Y. Cheng,
Y. Zhao, and J. Zhang. Core role-based access control:
Efficient implementations by transformations. In
Proceedings of the 2006 ACM SIGPLAN Symposium on

Partial Evaluation and Semantics-based Program

Manipulation, PEPM ’06, pages 112–120, Charleston, South
Carolina, USA, 2006. ACM.

[21] K. Pagiamtzis and A. Sheikholeslami. Content-addressable
memory (CAM) circuits and architectures: a tutorial and
survey. IEEE Journal of Solid-State Circuits, 41(3):712–727,
Mar. 2006.

[22] Preeta M. Banerjee and Eric Openshaw. Democratizing
technology: Crossing the “CASM” to serve small and

medium businesses. Deloitte Review, (14), Jan. 2014.

[23] J. Saltzer and M. Schroeder. The protection of information in
computer systems. Proceedings of the IEEE,
63(9):1278–1308, 1975.

[24] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. Computer, 29(2):38–47,
1996.

[25] A. Schaad, J. Moffett, and J. Jacob. The role-based access
control system of a european bank: A case study and
discussion. In Proceedings of the Sixth ACM Symposium on

Access Control Models and Technologies, SACMAT ’01,
pages 3–9, Chantilly, Virginia, USA, 2001. ACM.

[26] R. Spencer, S. Smalley, P. Loscocco, M. Hibler,
D. Andersen, and J. Lepreau. The flask security architecture:
System support for diverse security policies. In Proceedings

of the 8th Conference on USENIX Security Symposium -

Volume 8, SSYM’99, pages 123–139, Washington, D.C.,
USA, 1999. USENIX Association.

[27] M. V. Tripunitara and B. Carbunar. Efficient access
enforcement in distributed role-based access control (RBAC)
deployments. In Proceedings of the 14th ACM Symposium on

Access Control Models and Technologies, SACMAT ’09,
pages 155–164, Stresa, Italy, 2009. ACM.

[28] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu.
Authorization recycling in RBAC systems. In Proceedings of

the 13th ACM symposium on Access control models and

technologies, pages 63–72, Estes Park, CO, 2008. ACM.

[29] Q. Wei, J. Crampton, K. Beznosov, and M. Ripeanu.
Authorization recycling in hierarchical RBAC systems. ACM
Trans. Inf. Syst. Secur., 14(1):3:1–3:29, June 2011.

APPENDIX

A. EXTENDED RESULTS
The experimental results presented here do not use the HWDS

BitSet SDP, so the experiments are conducted using a typical user
workstation. The hardware platform for these experiments was a
2.5GHz Intel Core2 Quad (Q9300) with 3 GB of main memory
running CentOS 6 with Linux 2.6.32, java version 1.7.0_51, and the
OpenJDK VM; we set the maximum memory usage for the VM to
1.5 GB. (Note: the benchmark is single-threaded, so only one core
was used. The system was otherwise idle.) We use this platform to
validate that the performance of the software-only SDPs are com-
mensurate with the prior work, and to explore parameters for the
new experiments measuring session initation and destruction times,
and the effect of skewed access requests.

With this platform, we execute the VM 4 times, and ignore the
first 8 iterations of the each invocation. If the CoV of a measured
mean access time is larger than 0.02, then we discard that measure-
ment for the Intel Core2 Quad platform. Discarded measurements
reduce the number of samples and therefore the degrees of freedom
in the Student’s t-test used to compute the confidence interval. Oth-
erwise, this platform is used the same as the gem5 simulator plat-
form.

A.1 Reproduced Experiments
We generated configurations using the benchmark’s RBAConfig-

uration Java class. For all the configurations, we set the parameters
for the role, user, and permission connectivity to sequential (which
the benchmark author’s call uniform, and have as a parameter value
of 1). We set the role hierarchy to 0 for all of the results we report in
this paper, meaning no role hierarchy was used. We found that the
role hierarchy has little effect on the performance of access enforce-
ment for the SDPs we considered, because the SDP data structure
does not traverse the role-permission map.

With the number of permissions at 250, we generated one con-
figuration for the number of roles in {500, 700, 2000, 3000, 6000,
8000, 10000}. We set the number of roles per user to the number
of roles, and the number of roles per permission to the number of
roles divided by the number of permissions. With the number of
roles set at 100, we generated one configuration for the number of
permissions in {100, 500, 700, 2000, 3000, 6000}.

We generated session profiles for the above configurations using
the modified SessionProfile Java class as described in Section 3.2.
For each inter-session configuration, we generated thirty-nine ses-
sion profiles: three session profiles with 5, 100, and 1000 access
requests per session for each of the number of sessions between 2
and 15, All of these session profiles set the number of sessions per
access check equal to the number of sessions, activated 3 roles per
session, and only issued access requests to resources the user has
permission to access with the activated roles. We generated three
session profiles—with 5, 100, and 1000 access requests per session
made to permitted resources—for each intra-session configuration,
and with 15 sessions in each profile, 15 sessions per access check,
and the number of roles per session equal to the total number of
roles in the configuration. We attempted to match the configuration
and session profile parameters to those reported in the prior work,
but the number of access requests per session was not available, so
it is introduced as a variable in our study.

We ran the benchmark using the above configurations and ses-
sion profiles with the access matrix and CPOL SDPs on the In-
tel Core2 Quad. Figure 6 shows the mean access time using the
methodology described in Section 3.5. The first row shows the
inter-session experiments, with the second and third rows showing

the intra-session experiments with varying roles and permissions,
respectively. The first column is with 5 access requests per session,
and the second and third are with 100 and 1000. All error bars show
the 95% confidence interval.

Both SDPs perform best and with least variance when 1000 ac-
cess requests are issued per session, which was the largest we tried.
The long duration of the session enables the benchmark to reach the
best steady-state performance sooner with respect to benchmark it-
erations. With only 5 access requests per session, the access ma-
trix has fairly stable performance around 1.5µs per access request
across the inter- and intra-session experiments. CPOL reaches an
underperforming steady-state, and the benchmark terminates with
a lower performance than that seen with longer sessions. The large
confidence intervals for CPOL in the intra-session experiment with
varying permissions is due to this failure to reach the steady-state.

In comparison to the prior work, our results show a smaller gap
between the access matrix and CPOL access request times when
the number of access requests per session is large. The perfor-
mance of the access matrix is slightly higher than the previously
reported numbers, possibly due to differences in the platform or
modifications to the benchmark and methodology. CPOL however
performed better than the previous work, which we attribute to sen-
sitivity to the number of access requests per session.

A.2 Session Initiation and Destruction
Figures 6j, 6k, and 6l show the total initiation time averaged

across all steady-state iterations and VM invocations for each of
the experiments. Although these times will not be affected by the
session duration, shorter sessions will suffer more due to larger ini-
tiation and destruction costs. For these particular measurements,
we chose to use 1000 access requests per session. As more sessions
are added, we expect a linear increase in the total session initiation
time, as seen in Figure 6j. For the inter-session experiments, the
average initiation time for a single session with CPOL is between
about 60 and 100 µs, and the access matrix is between about 45 and
100 µs. As the number of roles increases, the session costs remain
flat because these two SDPs do not operate on roles. Figure 6l
shows the inititation time with increasing permissions, for which
the access matrix SDP scales poorly. With 6000 permissions, the
inititation time per session is over 45 milliseconds.

Figures 6m, 6n, and 6o shows the mean of the total destruction
time for the inter- and intra-session experiments. The access matrix
SDP seems to have a good destruction time, although the system-
wide cost to destroy a session is not captured since garbage col-
lection is not included in these times. For the inter-session exper-
iments, the average time to destroy a single session with CPOL
ranges between about 35 and 50 µs, and with the access matrix
about 10 to 15 µs. The intra-session experiments have flat destruc-
tion times, indicating that the time needed to destroy a session with
these SDPs is independent of the number of roles or permissions a
session uses.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL

(a) 5 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL

(b) 100 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL

(c) 1000 access requests/session

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Roles

Access Matrix
CPOL

(d) 5 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Roles

Access Matrix
CPOL

(e) 100 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Roles

Access Matrix
CPOL

(f) 1000 access requests/session

 0

 2

 4

 6

 8

 10

 12

 14

1
0

0

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Permissions

Access Matrix
CPOL

(g) 5 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1
0

0

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Permissions

Access Matrix
CPOL

(h) 100 access requests/session

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1
0

0

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

A
cc

es
s

C
h
ec

k
 T

im
e

(u
s)

Permissions

Access Matrix
CPOL

(i) 1000 access requests/session

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

3 4 5 6 7 8 9 10 11 12 13 14 15

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL

(j) Inter-session initiation time.

 0

 1000

 2000

 3000

 4000

 5000

 6000

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Roles

Access Matrix
CPOL

(k) Intra-session initiation time,
varying roles

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000
1

0
0

5
0

0
7

0
0

2
0

0
0

3
0

0
0

6
0

0
0

In
it

ia
li

ze
 S

es
si

o
n
 T

im
e

(u
s)

Permissions

Access Matrix
CPOL

(l) Intra-session initiation time,
varying permissions

 0

 100

 200

 300

 400

 500

 600

3 4 5 6 7 8 9 10 11 12 13 14 15

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Sessions

Access Matrix
CPOL

(m) Inter-session destruction time.

 0

 100

 200

 300

 400

 500

 600

 700

5
0
0

7
0
0

2
0
0
0

3
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Roles

Access Matrix
CPOL

(n) Intra-session destruction time,
varying roles

 0

 100

 200

 300

 400

 500

 600

 700

1
0
0

5
0
0

7
0
0

2
0
0
0

3
0
0
0

6
0
0
0

D
es

tr
o
y
 S

es
si

o
n
 T

im
e

(u
s)

Permissions

Access Matrix
CPOL

(o) Intra-session destruction time,
varying permissions

Figure 6: Experimental results with the modified benchmark

