
LockDown: An Operating System for Achieving Service
Continuity by Quarantining Principals

Gedare Bloom
Computer Science
Howard University
Washington, DC

gedare.bloom@howard.edu

Gabriel Parmer
Computer Science

George Washington University
Washington, DC

gparmer@gwu.edu

Rahul Simha
Computer Science

George Washington University
Washington, DC

simha@gwu.edu

ABSTRACT
This paper introduces quarantine, a new security primitive for an
operating system to use in order to protect information and iso-
late malicious behavior. Quarantine’s core feature is the ability
to fork a protection domain on-the-fly to isolate a specific prin-
cipal’s execution of untrusted code without risk of a compromise
spreading. Forking enables the OS to ensure service continuity by
permitting even high-risk operations to proceed, albeit subject to
greater scrutiny and constraints. Quarantine even partitions execut-
ing threads that share resources into isolated protection domains.
We discuss the design and implementation of quarantine within the
LOCKDOWN OS, a security-focused evolution of the COMPOSITE
component-based microkernel OS. Initial performance results for
quarantine show that about 98% of the overhead comes from the
cost of copying memory to the new protection domain.

CCS Concepts
•Security and privacy→ Operating systems security;

Keywords
access control, confinement, microkernel, protection

1. INTRODUCTION
Computer system security is a tale as old as time-sharing. The

plot features the protagonist, a humble operating system, and mot-
ley antagonists attempting to gainsay OS authority. The OS has
at its disposal the primary advantage of privilege, which under-
lies the vast array of access control solutions that have been dis-
covered and handed down across the generations. Alas, the adage
“power corrupts” fittingly describes the current situation in which
OSs have become large, unwieldy, bloated, complex beasts that are
no longer fit to wear the crown of privilege. Tragically, vulnera-
bilities in commodity OS services are commonplace, and computer
systems are no longer presumed secure until proven vulnerable.

In this paper, we explore a systemic problem with traditional ap-
proaches to computer security—namely, that the principle of least
privilege has not been applied sufficiently well within OS services.

EuroSec ’16 April 18, 2016, London, UK

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

Compromised system software compromises all software in the
system. For example, consider an application that unwittingly down-
loads a malicious executable that mounts a privilege escalation at-
tack, such as CVE-2013-2094. This particular attack exploits an
obscure bug in the Linux kernel to get root access via a seemingly
harmless syscall. The fundamental problem is that authorization
in modern systems is generally limited to checking proper access
to high-level objects such as files and devices, whereas exploitable
bugs can occur anywhere in OS code and circumvent authorization.
This problem is well-known and stimulates research in the primary
direction of information flow control.

The mandatory access control frameworks used by military sys-
tems in the 60s and 70s underlie information flow control [3]. In
a nutshell, a lattice of partially-ordered labels are given to prin-
cipals (subjects) and domains (objects), where the ordering deter-
mines whether or not a principal may access a domain. Labels are
a combination of a security level—e.g. a clearance or taint—and a
compartment. For a given access request to a domain, a reference
monitor checks all of the labels on that domain to see if the prin-
cipal has labels that grant permission for the given request. Labels
with different compartments are not comparable, and the reference
monitor denies access requests with two labels that are not compa-
rable by default. A sufficiently privileged operator carefully assigns
labels to all of the principals and domains in a system, and the ref-
erence monitor uses the ordering rules to prevent any information
from leaking except through permitted and known channels.

Four main problems for the security of an information flow con-
trol system include (1) the initialization stages including label
assignment and policy definitions must be trusted, (2) dynamic
modification of label security levels must be trusted, (3) the refer-
ence monitor that evaluates access requests must be trusted, (4) and
(unknown) covert channels may exist. These problems affect all
known implementations. The first problem is passed off to the
end user, while the rest are mitigated in part through maintaining a
small, simple trusted computing base (TCB); formal proofs of TCB
correctness or the security invariants; and runtime heuristics meant
to reduce the attack surface.

A traditional, monolithic OS is no longer sufficient for guaran-
teeing security even with information flow control. The primary
reason for such insufficiency is that the TCB of a monolithic OS
is too big: vulnerable code executes with supervisor permission
and can compromise the mechanisms that enforce information flow
control. For example, SELinux [10] is a hook-based framework
that supports mandatory access control using file and process la-
bels. With SELinux, the TCB contains the Linux kernel, which is
large, complex, and, from a security standpoint, untrustworthy.

The problem of complex, trusted software is not new. To stem
the growing complexity of OSs that provided information flow con-



trol, Rushby [20] introduced the idea of a separation kernel over 3
decades ago. Nearly synonymous with the notion of a hypervisor,
the separation kernel abstracts the physical machine so that multi-
ple, independent OS and application software stacks can be resi-
dent on the same platform. The separation kernel provides only the
minimum needed to enforce information flow control between the
partitioned software stacks. Usually, separation kernels keep the
explicit flows small or nonexistent, and make sharing data among
partitions difficult with large overhead. In addition, the separation
kernel has an opaque view over the resource usage of the partitions,
which frustrates efficient resource management. As such, a sepa-
ration kernel is best matched to mutually independent applications
with statically configured resource limits.

Concepts of microkernels are also related to the separation ker-
nel, especially the idea of putting more of the system services in
user-space. Microkernels afford a lower-cost communication path-
way, and have less stringent rules about information flow. Notwith-
standing, capability-based microkernels—notably EROS [22] and
seL4 [14]—enforce information flow control through kernel capa-
bility management and restriction of capability propagation.

Decentralized information flow control [15] is an approach that
descends directly from the lattice-based theory of information flow
control. Distributing the policy management enables each principal
in the system to control access to the resources it owns, which in
turn reduces the size and complexity of the trusted computing base
containing the remaining information flow control mechanisms. Us-
ing this approach, Asbestos [5] and HiStar [29] are two related OSs
that enforce information flow control with an interface for applica-
tions to generate and own new compartments and manage labels for
those compartments. A compartment’s owner can modify the secu-
rity level of labels for that compartment, which enables software
outside of the trusted computing base to exert control over portions
of the information flow control policy. HiStar shows how to use
ownership to create explicit control flow for kernel-level software,
and how to manage resources such that superuser permission is not
required for system administration.

Our hypothesis is that current secure OSs enforcing information
flow control are critically flawed due to one key factor: the gran-
ularity at which these systems apply and enforce labels. At issue
here is that the minimum size of the principal and domain are ar-
tifacts of the system design and its underlying protection mecha-
nism. Thus, the reference monitor cannot enforce arbitrarily small
principals and domains on commodity hardware when the typical
principal is a process, and the two common minimum domains are
the memory page and file descriptor. The minimum granularity is
a problem because of modern, massively threaded programs that
run in a single process executing on behalf of multiple users and
accessing resources that do not correspond with memory pages or
file descriptors, for example a web server like Apache handles re-
quests for all users in the same process with the same privileges
and accesses resources such as CPU time and network devices on
behalf of users. Furthermore, such applications may require ser-
vice continuity: a detected attack in one request should not impact
the rest. Custom hardware can support information flow control at
a much finer granularity [25, 30, 26], yet achieving security with
service continuity using off-the-shelf hardware within a single pro-
cess exhibiting highly dynamic behavior motivates rethinking the
assumptions behind access control.

The contributions of this paper are two-fold. First, we introduce
quarantine as a novel primitive for dynamically isolating a princi-
pal within a new, replicated protection domain. Second, we de-
scribe the design decisions and implementation challenges for us-
ing quarantine within the COMPOSITE component-based OS. We

present preliminary results measuring the performance of quaran-
tine in its first, unoptimized incarnation.

2. LOCKDOWN
In this paper, we introduce the LOCKDOWN operating system,

a novel approach to OS design that builds from the COMPOSITE
OS as a base layer. LOCKDOWN introduces new mechanisms to
COMPOSITE with a focus on the end goal of service continuity. To
achieve this goal, LOCKDOWN explicitly tracks dependencies and
interactions between principals and dynamically isolates suspicious
principals from the rest of the system. This isolation uses a new OS
primitive we call quarantine. When a high risk of compromise is
identified, the principals in question are dynamically disentangled
and peeled apart from the rest of the system.

Quarantine is, in some ways, analogous to modifying security
labels in an information flow control scheme. The difference, how-
ever, is that LOCKDOWN also moves or copies the domains that
a quarantined principal previously was accessing. Hence, quaran-
tine effectively creates a new, isolated set of domains for the af-
fected principals, a concept that we liken to a dynamic separation
kernel or sandboxing. A key step in LOCKDOWN’s quarantine is
to fork a protection domain, which shares many of the same ac-
tions as its POSIX namesake. Importantly, quarantine is an asyn-
chronous event that may occur at any time, which is the source of
much of the design complexity. In the following we review the rel-
evant background material for understanding the base COMPOSITE
system before discussing the salient challenges involved in design-
ing the quarantine primitive.

2.1 Background: COMPOSITE
COMPOSITE is a microkernel design based on fine-grained de-

composition of the OS into modular, isolated components. The
COMPOSITE OS is a small kernel with system-level services for
managing resource access policies implemented in user-level com-
ponents, e.g. scheduling, synchronization, file systems, memory
management, and events. These system components can expose
hierarchical control of resources thus enabling efficient subsystem
composition [17] and permitting flexible tradeoffs between isola-
tion and sharing.

Components have well-defined interfaces based on function defi-
nitions. Calling a function in a component’s interface causes a com-
ponent invocation using synchronous thread migration [16]. We
say that a client component invokes a server component. The client
must have a user-level capability for the specific function it calls
in the server. Kernel code mediates component invocations using
kernel-level capabilities that relate to a static, directed acyclic graph
of components.

Protection in COMPOSITE uses page tables to enforce isolation
between components. By default, each thread is a principal and the
(protection) domain is a single component, although grouping com-
ponents is possible using mutable protection domains [18]. The de-
sign goals for COMPOSITE focus on configurability, predictability,
reliability, and scalability. LOCKDOWN adds continuity and secu-
rity.

2.2 LOCKDOWN Terminology
• Q: the quarantine manager, a system-level service component

that implements the quarantine interface.
• P : a principal.
• T : a thread.
• O: a component that gets forked (O for original).
• C: a client component that invokes O, written C → O, read as



kernel

user

p0 p1 p2

p1 p2p0

Component
Split

p1 p2p0

p0 p1 p2

p1 p2p0

p0 p1 p2

p1 p2p0

p2p1p0
Quarantine

(a) (b) (c)

Figure 1: Example of component forking in LOCKDOWN. Circles are protection domains, and each is annotated with the principals (p0, p1
and p2) that are vulnerable within that domain. (a) Conventional systems where compromises (red Xs) in processes responsible for
more than one principal (e.g. in a webserver) impact all of them; compromises in the kernel impact all principals. (b) LOCKDOWN
system (simplified) with four components, and dependencies are arrows. The middle component (e.g. networking stack) can be forked
into two (c) when a principal (p2 here) is suspicious or high-risk. This dynamic quarantining separates the suspicious principal from
the others and mitigates the impact of a potential compromise in that component.

C invokes O. Equivalently, C depends on O.
• S: a server component that O invokes, i.e. O → S. Note that
O depends on S.
• F : a forked copy of O.

The main complexity when quarantining a principal P is for Q to
disentangle execution state for that principal within a set of compo-
nents it may access. For simplicity, we refer to a single such com-
ponentO at a time, butO may be a set of such components. Disen-
tanglement involves three distinct phases: clearing threads, forking
components, and routing principals. The following explains the
design of each phase.

2.3 Clearing Threads
The first phase is a preparatory step to ensure that forkingO will

not cause spurious faults or errors. A primary complication when
forking O is handling a thread T holding a lock in O, because the
critical section is protecting some data that is not necessarily in a
globally consistent state. If a fork happened—see below for the
technical details—with a held lock, then either the shared data will
be inconsistent or there will be a deadlock in whichever component
(O or F ) does not resume T .
Q deals with this complication by helping T through the crit-

ical section before forking O. Q exports the lock interface with
an implementation to facilitate tracking threads and locks in order
to help threads finish execution through critical sections within O.
This help requires thatQ knows every T that holds a lock inO, and
that Q can manipulate T to execute prior to forking O. This ma-
nipulation involves boosting T ’s priority (giving inheritance to any
lock T contends) until T releases the lock in O. The priority boost
occurs during disentanglement. Q finds the owners of locks held in
O and places the running thread (executing the disentanglement) in
the list of waiters for the owner to exit the critical section. This list
blocks the thread with priority inheritance, thus T inherits the run-
ning thread’s priority, which is currently hard-wired to the highest
priority. When T releases the lock its priority drops, Q is notified
via its lock implementation, and disentanglement proceeds.

2.4 Forking Components
Component forking relocates one or more principals from one

protection domain into a different protection domain with copies
of resources. We logically sub-divide forking into the following
five steps.
1. Copying protection domain O into F . Q replicates all compo-

nent memory in O into F including code and data.
2. Setting capabilities for F . After copying O, Q may remove (or

add) invocation capabilities to F . Currently, this feature is not
used, but the mechanism exists.

3. Preparing for post-fork fixups. After forking completes, com-
ponent invocations need to route correctly to either O or F ,
see below for the details. To help LOCKDOWN detect that a
fork has occurred and that the kernel capabilities store outdated
routing information, we add two fork counters to kernel capa-
bilities, one each for the send and receive sides. Q increments
the counters on the send-side for all of O’s capabilities, which
are copied to F . Q also finds every invocation capability to O,
i.e. every possible client of O, and increments the receive-side
counter for each of them. Q also keeps a mapping between
F and O to facilitate tracking a forked component back to its
original source component.

4. Fixing server metadata for F . After copying O into F , an invo-
cation F → S may rely on state established by some previous
invocation O → S. This state normally is associated with O’s
component identifier, which is passed as an argument in the in-
vocation to S. We call this state server metadata. The problem
to solve then is when and what state to copy, relocate, or recre-
ate in S on behalf of F .
Q needs to handle some system services like memory manage-
ment directly during the fork operation. Other system services
and application-level components handle the fixup using an up-
call that executes synchronously with component invocation to
S. Since requests from O may update the metadata after a fork,
either F → S or O → S may trigger the lazy update of this
metadata.
A tricky situation exists in case S depends on another server,
say T , and there exist invocations S → T that pass the com-
ponent identifier of O. (An example is the valloc component,
which allocates virtual address space in a destination compo-



Figure 2: Routing decisions after a fork. Component invoca-
tions shown as straight lines. Return paths (using return ca-
pabilities in the kernel) shown as curved lines pointing back
toward the invoking component. The dashed lines show rout-
ing decisions subsequent to forking. 1: the return capability for
an invocation made to S prior to the fork may be re-routed to
F . 2: F may get the return capability for an invocation made
to O prior to the fork. 3: new invocations from C to O may be
re-routed to F .

nent that may differ from the invoking component.) In this
case, T may be storing metadata related to O that needs to also
be fixed transitively due to the fork. We currently address this
problem by manually invoking T ’s upcall entry point if needed.
We also considered that this problem goes away if S is forked as
well, which following through all of the dependencies of S will
effectively create an isolated subsystem similar to a partition of
a separation kernel.

5. Migrating threads from O to F , if needed. One possibility is
that P already executes within O. In this case, Q could migrate
the thread associated with P so that it resumes execution within
F instead. Although the mechanisms for thread migration exist,
LOCKDOWN does not currently migrate threads when forking
components.

After these five steps have completed the forked component is ready
for quarantined principals. However, the act of forking does not in
itself direct the quarantined principals to the forked component. In-
stead, the capabilities for quarantined principals update lazily when
attempting to access the original component, which we call routing
the principals.

2.5 Routing Principals
Routing in COMPOSITE happens directly from an invocation ca-

pability. For example, component C has an invocation capability
that, in the kernel, names O as the destination. LOCKDOWN re-
quires solving the problem that simply mapping an invocation ca-
pability to a destination component cannot support features such
as dynamic (per-request/per-thread) routing. The only possibility
would be to choose whether to map the invocation capability to
O or F , and doing so on every invocation would be cumbersome.
Thus, LOCKDOWN routes components dynamically by making use
of the existing user-level fault handling framework in COMPOSITE
to update user-level capabilities impacted by a fork. See Figure 2
for a diagram and description of the routing decisions that occur
after a fork happens.

During component invocation, the kernel checks if the fork coun-
ters are non-zero, and if so a fork has occurred on either end of the
invocation. This check triggers fault handling into Q, which then
can fix routing in C or upcall into S to fix server-side metadata.

The fault handler in Q helps determine whether to route requests
from C to O or F , and uses a syscall to adjust the fork counter.

To detect forks during the return paths, LOCKDOWN stores an
epoch number associated with the fork counter within the invoca-
tion stack during the invocation kernel code. The kernel compares
the epoch with the current counter values during the return path. A
mismatch triggers a routing fault in the client.

Fault handlers in COMPOSITE, e.g. the page fault handler, ma-
nipulate the return address on the client-side of the invocation into
the faulty component by adjusting it to a fault return path in the
client. The COMPOSITE fault return path simply sets the return
value to a magic number. (In prior work that extends COMPOSITE
for fault tolerance [24], the fault return path sets a special variable
to 1, which is then checked by interface code.)

LOCKDOWN changes fault handling in two key ways. First, the
fault handler sets a return value by manipulating the return register
in the invoking component, C. The return value conveys infor-
mation back to C about the fault. When the client returns at the
modified return address, the fault return path in C checks the value
of the return register and determines whether updated routing infor-
mation exists. Subsequent invocations do not cause a routing fault
unless another fork occurs of either the client or server component.

2.6 Summary
Taken together, the three actions of clearing threads, forking

components, and routing principals has the intended effect of quar-
antining the re-routed principals. Non-quarantined principals will
still experience a routing fault, but are otherwise unaffected by the
forked component or quarantined principal.

3. EVALUATION
LOCKDOWN is in a nascent stage and the early efforts focus on

achieving a functional level of principal quarantine. In this sec-
tion, we present the preliminary results of quarantine performance.
The data were gathered on an Intel i7-2760QM running at 2.4 GHz
with only one core enabled and compiler optimizations (gcc -O3).
We use two microbenchmarks that measure the constituent costs of
quarantine. The first microbenchmark measures the time taken to
fork a component, and the second measures the time taken to fork
and invoke a component. In both cases the forked component is
invoked once before the first fork, and it does not have any resi-
dent threads when the quarantine begins. The second benchmark
induces principal routing overhead from the fault handling induced
by the invocation to the forked component. Each microbenchmark
repeats the measurement 50 times, hence each conducts 50 quaran-
tine operations.

Benchmark Mean Time (µs) Std. Dev. (µs)
1: Fork Only 1886.99 269.4

2: Fork and Route 1886.78 269.3

Table 1: Time taken by the fork portion of quarantine, and by
fork followed by route. Note that the cost to dynamically route
a principal following a fork is minuscule when compared to the
fork cost itself.

The data show that forking one component takes approximately
2 milliseconds of execution time. We investigated this cost further
and found that about 98% of this time (1858 µs) is spent copying
the data from the original component to its fork. Though unsur-
prising, this finding demonstrates that the system infrastructure for
quarantine is efficient: on the order of tens of microseconds besides



the cost of copying memory.

4. RELATED WORK
A fundamental way to increase system security is to break up

software into isolated chunks with heightened access control con-
straining their interaction to provide strong information flow con-
trol [21, 5, 29]. This isolation is effective as it is a direct imple-
mentation of the principle of least privilege. LOCKDOWN uses this
approach by inheriting it from the COMPOSITE component-based
system. COMPOSITE goes further than existing systems by ensur-
ing that even system schedulers, memory mappers, and synchro-
nization are component-scoped. LOCKDOWN goes beyond these
existing systems by providing isolation and protection along the
dimensions of principals as well as that of components (functional
units) to dynamically quarantine principals from each other and
prevent system-wide, and principal-wide, compromises.

Techniques related to sandboxing also overlap with the notion
of quarantine, in that supervisor software creates an isolated pro-
tection domain to execute untrusted code. In general, the prior art
for sandboxing uses a static approach: a protection domain is pre-
created for the untrusted code before it executes. LOCKDOWN fun-
damentally differs in that the isolated domain is created on-the-fly,
which enables seamless, self-reconfiguring protection of a running
system.

Library operating systems (libOS) are similar in spirit to hypervisor-
based separation kernels [19, 11, 1]. Graphene [27] identifies the
need for fine-grained libOS stacks to support multithreaded appli-
cations, and uses a sandboxing approach to enforce a simple access
control policy that prevents communication across protection do-
mains. Our work differs in a few key ways, the primary being that
communication is possible between protection domains. Key to our
approach is the fine-grained modularization of system services that
enables an efficient quarantine operation. It would be of interest to
explore quarantine in the context of a libOS.

System verification efforts have attempted to dramatically heighten
confidence in systems by mathematically verifying a small func-
tional core of the system [22, 9, 28, 13, 12]. Even systems that do
not go so far as to provide mathematical verification (e.g. [8, 23,
7, 24]) go to great effort to minimize the complexity of the TCB.
LOCKDOWN follows the same general approach by removing com-
plexity and policy from the system kernel, and instead defining it
in configurable components that can each manage disjoint sets of
resources. Thus, in LOCKDOWN the TCB should approach the
complexity of, or be smaller than, existing systems.

LOCKDOWN harnesses past work by extending capabilities, that
are a known mechanism for access control in secure systems. Capa-
bilities are tokens that designate access to an underlying resource [4],
and are the backbone of many secure systems [2, 21, 6]. LOCK-
DOWN expands on previous component-based systems by integrat-
ing principal-specific information into the capabilities to provide
another dimension of checking that enables expanded access con-
trol, forking, and dynamic principal routing after a quarantine event.

5. CONCLUSIONS AND FUTURE WORK
Although LOCKDOWN is now in a useable state, some of the

design and implementation details remain either unspecified or in-
complete. In addition to areas noted in the above, we are also work-
ing toward the necessary support to quarantine system-level com-
ponents especially those that manage resources such as schedulers
and memory managers. Our current focus however is on reducing
the overhead of quarantine in our system by optimizing the cost to
copy component memory, which currently consumes 98% of the

time taken by forking. We are also working toward integrating the
quarantine support with a web server to provide for fine-grained
isolation of web requests as an application benchmark and case
study. In the longer term, we are interested in comparing the quar-
antine primitive with other isolation techniques including static and
dynamic approaches.

6. REFERENCES
[1] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R.

Lorch, B. Bond, R. Olinsky, and G. C. Hunt. Composing OS
Extensions Safely and Efficiently with Bascule. In
Proceedings of the 8th ACM European Conference on
Computer Systems, EuroSys ’13, pages 239–252, New York,
NY, USA, 2013. ACM.

[2] A. C. Bomberger, W. S. Frantz, A. C. Hardy, N. Hardy, C. R.
Landau, and J. S. Shapiro. The keykos nanokernel
architecture. In Proceedings of the Workshop on
Micro-kernels and Other Kernel Architectures, pages
95–112, Berkeley, CA, USA, 1992. USENIX Association.

[3] D. E. Denning. A lattice model of secure information flow.
Commun. ACM, 19(5):236–243, 1976.

[4] J. B. Dennis and E. C. V. Horn. Programming semantics for
multiprogrammed computations. Commun. ACM,
26(1):29–35, 1983.

[5] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazieres, F. Kaashoek, and
R. Morris. Labels and event processes in the asbestos
operating system. In SOSP ’05: Proceedings of the twentieth
ACM symposium on Operating systems principles, pages
17–30, New York, NY, USA, 2005. ACM Press.

[6] K. Elphinstone and G. Heiser. From L3 to seL4 what have
we learnt in 20 years of L4 microkernels? In Proceedings of
the 24th ACM Symposium on Operating Systems Principles
(SOSP), pages 133–150, 2013.

[7] M. Engel and B. Döbel. The reliable computing base âĂŞ a
paradigm for software-based reliability. In Proceedings of
Workshop on Software-Based Methods for Robust Embedded
Systems (SOBRES), 2012.

[8] M. Hohmuth, M. Peter, H. Hartig, and J. Shapiro. Reducing
tcb size by using components untrusted small kernels – small
kernels versus virtual machine monitors. In Proceedings of
the 11th ACM SIGOPS European Workshop, 2004.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal verification of an OS kernel. In Proceedings of the
22nd ACM Symposium on Operating Systems Principles, Big
Sky, MT, USA, Oct 2009. ACM.

[10] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the linux operating system. In
Proceedings of the FREENIX Track: 2001 USENIX Annual
Technical Conference, pages 29–42, Berkeley, CA, USA,
2001. USENIX Association.

[11] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft.
Unikernels: Library Operating Systems for the Cloud. In
Proceedings of the Eighteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 461–472, New
York, NY, USA, 2013. ACM.

[12] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan.
Verifying security invariants in expressos. In Proceedings of



the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’13, 2013.

[13] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
Rocksalt: better, faster, stronger sfi for the x86. In
Proceedings of the 33rd ACM SIGPLAN conference on
Programming Language Design and Implementation (PLDI),
2012.

[14] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke,
S. Seefried, C. Lewis, X. Gao, and G. Klein. seL4: From
General Purpose to a Proof of Information Flow
Enforcement. In 2013 IEEE Symposium on Security and
Privacy (SP), pages 415–429, May 2013.

[15] A. C. Myers and B. Liskov. A decentralized model for
information flow control. In SOSP ’97: Proceedings of the
sixteenth ACM symposium on Operating systems principles,
pages 129–142, New York, NY, USA, 1997. ACM Press.

[16] G. Parmer. The case for thread migration: Predictable IPC in
a customizable and reliable OS. In OSPERT, 2010.

[17] G. Parmer and R. West. HiRes: A system for predictable
hierarchical resource management. In RTAS, 2011.

[18] G. Parmer and R. West. Mutable protection domains:
Adapting system fault isolation for reliability and efficiency.
In ACM Transactions on Software Engineering (TSE),
July/August 2012.

[19] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and
G. C. Hunt. Rethinking the library OS from the top down. In
Proceedings of the sixteenth international conference on
Architectural support for programming languages and
operating systems, ASPLOS ’11, pages 291–304, 2011.

[20] J. M. Rushby. Design and Verification of Secure Systems. In
Proceedings of the Eighth ACM Symposium on Operating
Systems Principles, SOSP ’81, pages 12–21, New York, NY,
USA, 1981. ACM.

[21] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: a fast
capability system. In Symposium on Operating Systems
Principles, pages 170–185, 1999.

[22] J. S. Shapiro and S. Weber. Verifying the eros confinement
mechanism. In SP ’00: Proceedings of the 2000 IEEE
Symposium on Security and Privacy, page 166, Washington,
DC, USA, 2000. IEEE Computer Society.

[23] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing
tcb complexity for security-sensitive applications: Three case
studies. In Proceedings of EuroSys 2006, April 2006.

[24] J. Song, J. Wittrock, and G. Parmer. Predictable, efficient
system-level fault tolerance in C3. In Proceedings of the
2013 34th IEEE Real-Time Systems Symposium (RTSS),
pages 21–32, 2013.

[25] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure
program execution via dynamic information flow tracking.
SIGPLAN Not., 39(11):85–96, Oct. 2004.

[26] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin,
B. Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood.
Crafting a usable microkernel, processor, and I/O system
with strict and provable information flow security. In
Proceedings of the 38th annual international symposium on
Computer architecture, ISCA ’11, pages 189–200, New
York, NY, USA, 2011. ACM.

[27] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen,
J. John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and D. E.
Porter. Cooperation and Security Isolation of Library OSes
for Multi-process Applications. In Proceedings of the Ninth

European Conference on Computer Systems, EuroSys ’14,
pages 9:1–9:14, New York, NY, USA, 2014. ACM.

[28] J. Yang and C. Hawblitzel. Safe to the last instruction:
Automated verification of a type-safe operating system. In
Proceedings of the 2010 ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
2010.

[29] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazieres.
Making information flow explicit in histar. In OSDI ’06:
Proceedings of the second USENIX symposium on Operating
systems design and implementation, pages 263–278, 2006.

[30] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis.
Hardware Enforcement of Application Security Policies
Using Tagged Memory. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and
Implementation, OSDI’08, pages 225–240, Berkeley, CA,
USA, 2008. USENIX Association.


