
Optimized Event Notification in CAN through
In-Frame Replies and Bloom Filters

Gedare Bloom∗, Gianluca Cena†, Ivan Cibrario Bertolotti†, Tingting Hu‡, Adriano Valenzano†
∗Howard University, 2300 6th St NW, Washington, DC 20059, USA

Email: gedare@scs.howard.edu
†CNR – IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy

Email: {gianluca.cena, ivan.cibrario, adriano.valenzano}@ieiit.cnr.it
‡University of Luxembourg – FSTC, 6 Avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

Email: tingting.hu@uni.lu

Abstract—Thanks to its distributed and asynchronous medium
access control mechanism, CAN is the ideal choice for intercon-
necting devices in event-driven systems. When timing require-
ments of applications are not particularly demanding, as in the
case of, e.g., reactive and proactive maintenance, constraints on
event delivery can be relaxed, so that their notification may rely
on best-effort approaches.

In this paper, a number of techniques are taken into account
for notifying events in such a kind of systems, and their
performance has been evaluated. Besides conventional CAN, a
recent proposal for extending this protocol, termed CAN XR, is
considered. Moreover, the adoption of Bloom filters to cope with
rare events in very large systems has also been evaluated.

I. INTRODUCTION

Controller Area Network (CAN) [1] was introduced more
than 20 years ago for on-board vehicle use, but is now very
popular in networked embedded systems as well because
of its low cost and high robustness [2], [3]. Basically, the
Medium Access Control (MAC) mechanism CAN relies on
implements a bit-wise distributed arbitration procedure among
nodes, which permits contentions to be resolved at runtime
based on message identifiers. This prevents collisions and
makes this network suitable for use in event-driven systems.
In fact, good reactivity is achieved in spite of the relatively
low transmission speed of CAN (1 Mb/s at most, which can
be increased by resorting to the newer CAN FD protocol [4]).

By coupling bit-wise arbitration and schedulability analysis,
hard real-time constraints can be satisfied when traffic patterns
(period, payload size, and deadline of all data streams) are
known in advance [5]–[8]. However, CAN proves to be
very suitable for the use in soft real-time systems as well,
including those which actually have no real-time constraints.
In particular, it offers interesting performances in those cases
where details on message generation are only partially known
at design time, provided that constraints on their delivery are
relaxed. For instance, it makes little sense to define strict
bounds on delivery times when warning messages have to
be collected from a (possibly large) plant, where they can
be generated by devices sporadically. Conversely, a best-effort
strategy often suffices in these cases, which strives to minimize
latencies on the average.

978-1-5090-5788-7/17/$31.00 c©2017 IEEE

In this paper, CAN-based event-driven systems, character-
ized by loose timing requirements, are considered. A number
of techniques are proposed for dealing with event notification
in such a kind of systems, by using both existing solutions
(classical CAN and CAN FD) and new technologies, like the
CAN with eXtensible in-frame Reply (CAN XR) proposal [9].
The adoption of Bloom filters [10], [11]—a data structure
conceived for efficiently managing huge data sets—has also
been considered for those scenarios where false positives are
tolerated. Simple metrics have been employed to assess, in
very general terms, the performance these solutions offer. A
thorough analysis of these aspects requires to suitably model
event generation, and will be left for future works.

The paper is structured as follows: in Sections II, III, and IV,
concise descriptions are provided about event-driven systems,
the CAN protocol, and Bloom filters, respectively, while in
Section V the conceptual model of the architectures we are
taking into account is introduced. Sections VI describes some
best-effort approaches for implementing event notification in
classical CAN, whereas Sections VII and VIII refer to the
CAN FD protocol and the CAN XR proposal, respectively.
Finally, some conclusions are drawn in Section IX.

II. NOTIFICATIONS IN EVENT-DRIVEN SYSTEMS

Industrial distributed monitoring and control systems based
on the event-driven paradigm are made up of nodes that
cooperate by exchanging, asynchronously or acyclically, mes-
sages over a communication network. Unlike systems where
devices are polled cyclically—with cycle times typically in the
order of tens of milliseconds, and even less—noticeably lower
bandwidth is required, especially in the case a large number of
nodes are interconnected whose state changes slowly. A sec-
ond advantage of event-driven systems is given by their higher
robustness: the lack of a centralized coordinator—typically
termed the application/network master, e.g., a programmable
logic controller (PLC)—implies that not necessarily there
is a single point of failure (besides, obviously, the bus).
On the other hand, no warranties can be provided for the
timings of message transmissions, unless their generation rate
is suitably constrained (a particular case is represented by
periodic traffic). This implies that latencies may grow sensibly

1

when many events take place at about the same time, and not
always reasonably tight upper bounds can be found for them.

In this paper, we restrict our attention to interactions that
can be modeled by means of “pure” unqualified events (i.e.,
no ancillary information is needed to further qualify them).
Possible examples are digital systems where each change of
state is mapped on a specific event. Extension to qualified
events (that is, events that bear some additional information
with them) is also possible, but it is slightly more complex and
will be left for future work. When receiving a notification re-
lated to a particular event, a node understands that, somewhere
in the network, a specific condition has occurred on another
node (the one that raised the notification). For instance, the
event may correspond to a warning threshold being exceeded
by a specific analog signal (or that signal returning below the
threshold again), a proximity sensor detecting the presence of
an object (or its absence), the start/completion of an activity
(e.g., a software task), a heartbeat pulse, and so on.

In the following, we will focus on systems where a large
number (hundreds) of nodes (sources) can potentially generate
a huge amount of different unqualified events (thousands to
millions), which must be notified as soon as possible over
a CAN bus. It is worth remembering that the adoption of
repeaters to interconnect network trunks permits to increase
fan-out, and hence, the number of connected devices. More-
over, when running at low speed (e.g., 50 kb/s or less), CAN
networks can stretch over quite large areas (1 km and more).

Therefore, the envisaged solutions are likely suitable to
cover the whole plant (or large parts of it). Unlike central-
ized systems, we assume that there is not a single event
engine (sink). Conversely, following the well-known producer-
consumer paradigm, events are broadcast from source nodes
on the CAN bus, so that they can reach all the related sink
nodes at once. According to this approach, sources are not
required to know which sinks will actually consume their
events. This scenario closely resembles next-generation sensor
networks, which are used to collect information in industrial
plants for maintenance purposes (customarily classified as big
data).

Although generation times of events by sources are not
known in advance, as they are spontaneously produced by
devices upon specific local conditions, we assume that only
a limited number of events are typically raised system-wide
at the same time, and in particular that the average (overall)
traffic related to event notification, also including a suitable
safety margin, is strictly lower than the portion of network
bandwidth reserved to this purpose. In fact, for several classes
of events (e.g., those related to warning conditions), occur-
rence is usually considered to be rare. In this way, the network
almost always operates well below the saturation threshold,
so that all events are eventually notified. With little loss of
generality, and while not strictly necessary, events are assumed
to be sporadic, i.e., a minimum interarrival time is defined for
them. Since event generation is unpredictable and sources are
not synchronized in any way, chances are that, from time to
time, the amount of events to be delivered may temporarily

exceed the network capacity. In turn, this causes undue delays
in event notification. Since timing requirements are assumed to
fall under the soft real-time category, late delivery is tolerated
as long as it happens seldom.

In order to statistically improve latencies in the above
scenario, suitable approaches are needed, which mostly aim
at reducing network utilization by increasing communication
efficiency. In the following, several techniques for accom-
plishing this task are described and discussed. A number of
them are quite straightforward, and are customarily employed
in existing CAN networks. Others are instead based on the
CAN XR proposal, possibly combined with fast searching
techniques like Bloom filters. Generally speaking, there is not
a single, optimal solution, as many factors have to be taken
into account.

It has to be pointed out that mixing different kinds of
messages in CAN is indeed possible. As a consequence,
besides asynchronous notifications, other pieces of information
can be concurrently conveyed on the same network, like
analog readings (temperature, level, flow, position, etc.) or
structured data (parameter blocks, text strings, and others),
possibly carried out at a periodical pace and even characterized
by firm deadlines. For instance, a set of real-time streams
(corresponding to, e.g., process data objects) can be mapped
on higher-priority identifiers, and feasibility analysis can be
exploited to assess whether or not timing constraints are met.
Part of the lower-priority identifiers can instead be reserved
to event notification according to the techniques described
below. Hence, full composability can be achieved, merely
considering the blocking effect lower-priority messages have
on higher-priority ones during feasibility analysis. Importantly,
encoding schemes that may cause false positives can coexist
side-by-side with those which do not suffer from this limitation
(by mapping them on either distinct messages or different
parts of the same message). Every application will select the
most suitable notification approach, depending on its specific
requirements.

We assume that devices (CAN nodes) can behave as either
sources or sinks of events (sensors and actuators, respec-
tively), and they can possibly assume both roles at the same
time too (controllers). Dealing with events once they have been
delivered to the sink(s) is outside the scope of this work.

III. CAN BASICS

The MAC mechanism of CAN is based on bit-wise arbi-
tration, which is (mostly) carried out on the identifier field.
Two different sizes are foreseen for this field, namely base
(11 bits) and extended (29 bits). Concerning the size of the
data field, it is possible to distinguish between classical CAN
(8 bytes at most) and CAN FD (up to 64 bytes). By combining
these options, four frame formats are actually defined for data
frames in [1], that is: Classical Base Frame Format (CBFF),
Classical Extended Frame Format (CEFF), FD Base Frame
Format (FBFF), and FD Extended Frame Format (FEFF).

2

TABLE I
FRAME SIZE S VS. PAYLOAD SIZE D IN CAN (ALL VALUES IN BITS)

Section CBFF CEFF FBFF FEFF

Arbitration 13 33 13 33
Control 6 6 9 8
Data 8D 8D 8D 8D

Data (max) 64 64 128 [512] 128 [512]
CRC 15 15 27 [32] 27 [32]
Trailer 10 10 10 10
IMS 3 3 3 3

Total 47 + 8D 67 + 8D 62[67]+8D 81[86]+8D

Total (min) 47 67 62 81

Total (max) 111 131 190 [579] 209 [598]

A. Message size

CAN DATA messages are made up of several sections:

• Arbitration: Start of Frame (SOF) bit, Identifier (ID)
encoded on either 11 or 29 bits—in the latter case
also including the Substitute Remote Request (SRR) and
Identifier Extension (IDE) bits—as well as the Remote
Transmission Request (RTR/RRS) bit.

• Control: its exact format depends on the specific CAN
flavor; besides the Data Length Code (DLC) on 4 bits,
the FD Format indicator (FDF), and possibly one reserved
bit, it includes, in FD formats, the Bit Rate Switch (BRS)
and Error State Indicator (ESI) bits; importantly, for base
formats the IDE bit is also located here.

• Data: Includes a variable number D of bytes (D = 0...8
for classical CAN and D = 0...64 for CAN FD); in
the former case DLC directly encodes D, whereas in the
latter DLC patterns above 8 are put into correspondence
with D = 12, 16, 20, 24, 32, 48, and 64, respectively.

• CRC: Stuff Count (3 bits plus parity) and CRC sequence
(15 bits in Classical CAN, either 17 or 21 bits in CAN
FD, depending on whether D ≤ 16 or 20 ≤ D ≤ 64);
fixed stuff bits must be added in CAN FD at the beginning
and after each fourth bit of the CRC field, this resulting
in 6 or 7 additional bits, depending on D.

• Trailer: CRC delimiter (CDEL), ACK slot (ASLOT), and
ACK delimiter (ADEL), followed by the End of Frame
(EOF) field encoded as 7 recessive bits.

• Intermission (IMS): 3 recessive bits located between any
pair of adjacent frames.

The lower part of Table I reports the frame size S (in bits)
vs. the payload size D (in bytes) for CBFF, CEFF, FBFF,
and FEFF, as well as the minimum and maximum size (for
empty and maximal payloads, respectively). For FBFF and
FEFF, sizes refer to both the case D ≤ 16 and (in square
brackets) the case 20 ≤ D ≤ 64. Non-fixed stuff bits have
been neglected for simplicity, as their exact number may vary
depending on the payload. However, they affect in a similar
way all formats. As we are dealing with channel occupation,
intermission is included in the computation of S.

B. CAN XR

CAN with eXtensible in-frame Reply (XR) [9] is a recent
proposal for extending CAN functionality. Although it applies
to both classical and FD frames, the latter choice brings
higher benefits because of the larger payload. While the frame
format remains exactly the same as CAN (or CAN FD),
in order not to impair coexistence with existing controllers,
the protocol is augmented is such a way that a plurality of
nodes can take part into the transmission of the same frame.
Basically, every exchange in CAN XR is started by a specific
node (initiator), and corresponds to an atomic XR transaction.
Multiple nodes (responders) are allowed to be writing on the
bus in the data field of XR frames (in-frame replies). Target
nodes (consumers), which may rely on conventional CAN
controllers, obtain all such pieces of information at once.

The data field of an XR frame is conceptually split into one
or more slots, which are assigned to responders. Replies of re-
sponders can be either disjoint (exclusive slots) or overlapping
(shared slots). In the latter case, which is quite relevant for this
work, the resulting bit pattern on the bus corresponds to the
bit-wise AND among the bit patterns sent by all responders.

Besides starting a transaction, the initiator also takes care
of supervising it, by inserting stuff bits when needed so as
to preserve the encoding rules of CAN (supervisor role). It is
worth remarking that, at any time, both the active responder
and the initiator carry out this task, and that the related stuff
bits will overlap since they are inserted according to the
same rules. The initiator also takes care of terminating the
frame, by transmitting the CRC and the trailer. Additional
details on a preliminary version of CAN XR can be found
in [9]. A prototype implementation of CAN XR on a software-
defined CAN controller (SDCC) proved that the protocol
behaves correctly and retains full compatibility with existing
controllers.

IV. BLOOM FILTERS BASICS

Bloom filters are typically used with data structures op-
timized for insert and search operations. They are a valid
alternative to bitmaps, when the cardinality of the set among
which elements are drawn (universe) is very large but the
number of elements actually stored in the data structure is
much smaller. Both bitmaps and Bloom filters can be used
for creating and managing dynamic sets, and can be seen as
functions that, given an element (unambiguously characterized
by its key), check whether or not it belongs to the set. Although
techniques are available that permit removal of elements from
Bloom filters, we will consider the case where elements can
only be added (by far simpler and more space-efficient).

The only drawback of Bloom filters is that, sometimes they
may return false positives, i.e., they may indicate that a given
element is present in the set while it is actually not there. By
carefully choosing the size of the data structure, the probability
of this event happening can be made arbitrarily low. However,
the lower this probability is, the higher the overhead, which
means that there is a trade-off between these quantities.

3

A. Bloom filters basics

A Bloom filter basically consists of a bit array b (bitmap)
which includes m Boolean values (bits, for short), used to
“store” elements drawn from a universe A. It is modeled as
a function β(a) : A 7→ {1, 0} that checks the presence of
element a ∈ A in the data structure (a coincides with the key
of the element). Additionally, k hash functions are defined, we
denote hi(a) : A 7→ {0, ...,m− 1} , i = 1...k.

Initially, all bits of an empty Bloom filter are set to 0. Every
time an element a is inserted in the data structure, all the hash
functions are evaluated and the bits of b in the corresponding
positions are set to 1. In formulas, b [hi(a)] ← 1, i = 1...k,
where operator “←” denotes assignment.

Checking the presence of element a in the data structure is
also very simple and efficient. Hash functions are evaluated
in a and the bits of b in the corresponding positions are
checked. If all of them are at the value 1 the element is
possibly present, while on the contrary it is certainly absent.
In formulas, β(a) =

∏k
i=1 b [hi(a)] , i = 1...k, where operator

“
∏

” represents the logical product of a sequence.
This approach may result in false positives, i.e., a Bloom

filter may occasionally report that an absent element is present.
The probability of false positives can be calculated [12], [13],
and mostly depends on the ratio between the size m of b
and the number n of inserted elements, as well as on k. For
instance, if m/n = 8, then such a probability can be as low
as 2.16% when k is set to 6. Importantly, unlike conventional
bitmaps, the cardinality of A is, in theory, irrelevant.

B. Using Bloom filters for event notification

Bloom filters can be applied to event notification in dis-
tributed systems where a certain amount of false positives
(i.e., when sinks mistakenly assume that a certain event has
been notified, while it was not) is tolerated. It is worth
remarking that, unlike the case where Bloom filters are used
with data structures, having sinks checking separately every
event notification to discover false positives nullifies most of
the advantages of using Bloom filters. Hence, we must look
at use cases where these additional checks do not take place.

A first example is given by system warnings, whose pres-
ence is used to update diagnostic data in distributed control
systems (e.g., to achieve reactive and proactive maintenance).
In these cases, changing marginally statistics (due to a rela-
tively small number of false positives being counted as actual
warnings) is usually perfectly acceptable.

A second example is given by modern safety systems, where
moving near a piece of equipment (e.g., a robot) causes it to
move more slowly, and only when the distance falls below the
safety limit to stop completely. This is sometimes referred to
as Dual Check Safety (FANUC DCS). Again, if from time to
time the equipment is unnecessarily slowed down, the impact
on system performance is negligible.

A third example is found in control systems where a certain
event, notified by a source, is the direct cause of another
event, which is consequently generated by the sink. In the
case the source senses the second event but it did not raise

the originating event, it can try to undertake corrective actions
(only applicable to non-critical systems with slow dynamics).

V. SYSTEM MODEL

Let S = {s1, ..., s|S|} be the set of nodes in the network,
while ES = {e1, ..., e|ES |} is the set of all events defined in
the system (universe). Operator |·| denotes the cardinality of
the set it is applied to.

A. Encoding of Events

In order to send notifications over CAN, events are mapped
on specific messages. Let MS =

{
m1, ...,m|MS|

}
be the set

of messages reserved to event notification. Quite obviously
|MS| ≤ NID, where Nstd

ID = 211 for base (standard) CAN
identifiers and Next

ID = 229 for extended ones. In the follow-
ing, for simplicity, we will implicitly assume that the whole
identifier space is available for events.

One or more messages mi,j can be assigned to node
si for notifying events. Let Msi = {mi,1, ...,mi,|Msi |} be
the set of such messages. These sets are exhaustive, i.e.,
MS =

⋃
i=1...|S|Msi , and exclusive, i.e., Msx∩Msy = ∅, x 6= y.

The latter property can be relaxed if empty CAN messages are
considered, for which more than one producer can be active
at the same time in the network. This means, that the same
empty message can be assigned to more than one node.

Roughly speaking, two classes of solutions can be devised
for event mapping: either a flat event space is envisaged
or a hierarchical scheme is adopted. In the former case,
each event is mapped onto a distinct empty message, which
ensures the highest flexibility in the system configuration
phase (every node can in theory notify all events). In the
latter case, events are exclusively assigned to (and managed
by) the related source node (up to |S| distinct devices). So
as to optimize notifications, multiple distinct events can be
mapped onto the same non-empty message with hierarchical
schemes, by suitably encoding them in the data field. This
is not possible when mapping is flat, because non-empty
messages in conventional CAN must have a unique producer.

Let Emi,j
be the set of events that are mapped by si on

a given message mi,j . If Emi,j
= {eg} the notification of

eg coincides with the transmission of mi,j . Otherwise, if∣∣Emi,j

∣∣ > 1 at least one event has to be active in Emi,j so
as to trigger the message exchange. The set of all events
generated by node si is denoted Esi , and can be expressed
as Esi =

⋃
j=1...|Msi | Emi,j

. Generally speaking, |Esi | depends
on the number of messages assigned to si, their size, and the
encoding scheme used for events. Overall, ES =

⋃
i=1...|S| Esi .

When
∣∣Emi,j

∣∣ > 1, not necessarily all pending events in
Emi,j

are able to fit into a single instance of mi,j . This
property, in fact, only holds for some of the encoding schemes.
Let mi,j,` denote instance ` of mi,j , and Vmi,j,`

the set
of distinct events which are conveyed in that instance. For
simplicity, in the following we will assume that encoding is
such that the maximum number Vmi,j

of events that can be
included in a single instance of mi,j (message capacity) is
fixed and does not depend on the specific events included.

4

This means,
∣∣Vmi,j,`

∣∣ ≤ Vmi,j
,∀`. Whenever message capacity

is exceeded several instances of mi,j will be sent on the bus.

B. Performance Metrics

The following metrics are considered in order to character-
ize solutions for event notification:
• Maximum number of events (ES): how many distinct

events can be defined in the system whose notification
is supported by the considered solution, |ES| ≤ ES.

• Maximum event notification rate (Λ): how many events
can be conveyed in a specific time interval under sus-
tained traffic conditions (all events always active).

• Effective event notification rate (λ): how many events
can be conveyed in a specific time interval under specific
event generation conditions.

Let R be the bit rate on the CAN bus, R = 1/Tbit, and let
Cm be the duration of message m on the bus, which depends
on its size S (in bits) and R. For message m it can be expressed
as Cm = Sm/R, where Sm depends on the data field size
Dm (in bytes) and the frame format (either base or extended
identifier, for both classical and FD frames).

The maximum event notification rate Λm for message m
(that is, assuming that it can exploit the whole network
bandwidth and all the related instances are always filled with
events up to their capacity), can be evaluated as

Λm = Vm/Cm = R · Vm/Sm. (1)

Since only one node can be transmitting in CAN at any given
time, if all messages in MS are assumed to have the same size
and encoding, then ΛS = Λm.

Unlikely, in a well-dimensioned network, many events may
be pending on the same node at the same time waiting for
transmission. Nevertheless, the ability to pack several pending
events into the same message can help to overcome temporary
overload conditions quickly. The effective event notification
rate λm can be evaluated as

λm = ν̄m/Cm = R · ν̄m/Sm. (2)

where ν̄m denotes the average number of events included in
each single instance of m (ν̄m ≤ Vm). Let ε̄m be the mean
number of pending events, among those mapped on message
m, a node has to notify when gaining bus access (ε̄m ≤ |Em| ≤
Em), where Em is the maximum number of events that can
be mapped on m. If Vm ≥ |Em| then all pending events can
always fit in m, and hence ν̄m = ε̄m. Conversely, if Vm < |Em|
several instances of m may be required to convey the pending
events (∼ dε̄m/Vme, on average). In steady-state conditions,
the mean number of events carried in an instance of m can be
approximated as ν̄m ' ε̄m/ dε̄m/Vme.

VI. MAPPING EVENTS ON CAN MESSAGES

Thanks to its access scheme based on arbitration, CAN is
a very good choice for connecting devices in event-driven
systems. Unlike most industrial communication systems based
on the master-slave (centralized) approach, there is no need for
a node that continuously polls networked devices to determine

ARB+CTRL CRC+EOFsi
mi,j

l
ei,j,l

ARB+CTRL 0 CRC+EOFsi
mi,j

ei,j,l

ARB+CTRL CRC+EOFsi
mg eg

si’

Source node(s) CAN message(s) Event(s)

a) Flat assignment of events to empty messages

b) Message payload includes an event bitmap (local events mapped on bit positions l)

c) Message payload includes an event list (local events encoded as a small integers l)

0l’

si’’

l

l’ ei,j,l’

0

ei,j,l’

Fig. 1. Mapping of events in conventional CAN (flat, bitmap, list).

if some event has possibly arisen. When a condition occurs
on a device which need to be quickly notified to the system,
a message is spontaneously broadcast over the CAN bus
according to the producer-consumer (distributed) approach.
This means that more than one sink can be notified at the
same time using a single message transmission.

In the following, a number of basic approaches are described
for dealing with event notification in classical CAN. Besides
using a separate message per event, solutions like bitmaps and
lists will be taken into account, which permit several events
to be gathered in the same message.

A. Flat event mapping

As depicted in Fig. 1-a, each event eg ∈ ES is directly
mapped on a distinct CAN message mg , where g is a global
index which identifies that specific event system-wide. In other
words, Vmg

= Emg
= {eg}. If, as assumed, no ancillary

information has to be provided along with the event, empty
messages can be used. By exploiting the properties of empty
messages in CAN, the same event (characterized by a specific
CAN identifier) can be notified by more than one node,
without causing any issues to the arbitration mechanism. The
related bit sequences, in fact, are exactly the same and will
overlap on the bus. This is the simplest and most straight-
forward solution, and in the following it will be used as the
baseline.

Mapping between events and CAN identifiers can be mod-
eled as an injective function, but it is typically not bijective as
in real networks some identifiers are likely to be reserved for
other kinds of data exchanges. Thus, ES = |MS|, which implies
EstdS = 2048 and EextS ' 537 · 106. If we consider a network
made up of a single node, which generates only one kind of
event, mapped on message m, Λstd

m = 21.28 · 10−3 · R while
Λext
m = 14.93 ·10−3 ·R. As all empty messages have the same

size, for the whole network we have ΛS = Λm. For example,
on conventional CAN running at 50 kb/s, the notification rate
can be as high as about 1 kHz.

5

The case where more than one event can be generated by
the same node can be trivially dealt with by assigning the node
more than one message (one per event). The overall maximum
number of events ES does not change, because the amount of
CAN identifiers available network-wide remains the same. The
same holds for the maximum notification rate ΛS.

B. Hierarchical event mapping

When devices are allowed to generate multiple events,
possibly at the same time, hierarchical mapping could be a
better solution than flat mapping. Each event eg in the whole
system is mapped on a triple, g 7→ 〈i, j, l〉, where si is the
producing node, mi,j is the message used by si for notifying
eg , and l is a local index that identifies a specific event among
those encoded in mi,j . Unless a single, fixed event is mapped
on the message (which bring us back to the case of flat
mapping), the data field can not be empty, which implies that
the producing device of each event must be unique on the
whole network.

So as to make comparison of the performance indices for the
different solutions easier, in the following we will assume that,
for any given solution, all messages used for event notification
by every node in the network have the same encoding and
size. This implies that the maximum cardinality Em of the set
of events that can be mapped on any message m, as well as
its actual capacity Vm, are fixed and do not depend on m.
Under the above hypotheses, ES = |MS| · Em. Moreover, the
expressions of the maximum network event notification rate
ΛS are greatly simplified, as this quantity becomes equal to
the maximum notification rate Λm in the case only message
m is repeatedly being exchanged over the network.

The case of the effective notification rate is noticeably more
complex to deal with. In this paper, for sake of simplicity we
will assume that the generation law for every event in ES,
although random, is the same. Therefore, the average number
ν̄m of events included in each message instance does not
depend on m. This means that the rate at which events are
notified in the whole system can be reasonably approximated
by the notification rate evaluated for a single message (that
is, λS is about the same as λm). An in-depth analysis, based
on statistical characterization of event generation on nodes
and their distribution on messages, requires a suitable network
simulator, and will be left for future works.

Concerning notification rates, it should be noted that the
frame size Sm in (1) and (2) depends on Dm, which in turn
is decided depending on Em, Vm, and the scheme adopted to
encode local events. Clearly, optimized solutions can be also
devised, possibly based on mixed notification schemes, where
the above assumptions no longer hold.

Two sample encoding schemes will be described below.
While meaningful for real applications, by no means they have
to be considered exhaustive.

1) Event Bitmap: A very efficient approach to encode the
events raised by a node is to use the data field of its messages
as a bitmap, as shown in Fig. 1-b. In particular, the simplest
scheme is to rely, for each message m, on a static assignments

of the events in Em to the bits in the data field on m. In this
case, l coincides with the bit position in the bitmap. Moreover,
Em coincides with Vm. In particular, if the data field of m
includes Dm bytes, Em = Vm = 8Dm.

As per our simplifying assumptions, all messages have the
same size and encoding, and so for the whole network we have
ES = |MS| · 8Dm and ΛS = Λm = R · 8Dm/Sm, whatever the
assignment of messages to nodes. If the maximal frame size
allowed in classical CAN is taken into account (Dm = 8), then
EstdS ' 131 ·103 and Λstd

S = 576.58 · 10−3 · R, much higher
than with flat mapping. However, unlikely all local events of a
given device will be raised at the same time. Since for bitmaps
Em = Vm, all pending events will always fit in a single instance
of m (that is, ν̄m = ε̄m). Thus, the effective event notification
rate is λstdS ' λstdm = ε̄m · 9.01 · 10−3 ·R.

Obviously, the unused message capacity of mi,j cannot be
reused by nodes other than si, and not even by node si itself
for its events mapped on messages other than mi,j . However,
this is not a severe issue, given the non-negligible protocol
overhead in CAN frames. Comparing λS to the baseline
solution (flat mapping), it turns out that, in the case Dm = 8,
bitmaps are advantageous when at least ν̄m = 3 events are
conveyed, on average, in every CAN message, whereas 2
events suffice in the case Dm ≤ 5.

It is worth noting that, when |Esi | > 64, more than one
message has to be allocated to si, that is, |Msi | > 1. Because
of our simplifying assumptions, this does not change neither
|ES| and not even ΛS. In this case, unless events generated by
the same node are statistically correlated, the optimal solution
is to minimize the number of messages allocated to each node,
by enlarging their size Dm as much as possible.

2) Event List: In order to provide higher flexibility, the
message data field can be used to convey a variable number
of local events encoded as a list, as sketched in Fig. 1-c (many
different implementations can be devised to this aim). Unlike
bitmaps, Em and Vm are typically not the same. Generally
speaking, encoding local events using patterns of w bits
(w ≤ 8Dm) permits the assignment of up to Em = 2w distinct
events to message m (one less, in the case a specific pattern is
reserved to encode the “no event” condition). In other words,
1 ≤ l ≤ 2w − 1. In the simplest case when, as per our
simplifying assumptions, w is the same for every message
in the network, ES = |MS| · (2w − 1). Instead, the capacity of
message m is up to Vm = b8Dm/wc.

For instance, if Dm = 8 bytes (largest classical CAN
frame) and w = 8 bits (local events are encoded on one
byte, which means ES = |MS| · 255), then up to Vm = 8
events can be conveyed at a time in the same message,
which implies Λstd

S = Λstd
m = 72.07 · 10−3 · R. Message

capacity Vm is lower than for bitmaps, even though set Em

can be noticeably larger. Typically, Vm ≤ |Em|, in which case
λstdS ' λstdm ' ε̄m/ dε̄m/ b8Dm/wce · 9.01 · 10−3 ·R. The case
Vm > |Em| is hardly interesting, as this means that bandwidth
is being wasted (more room is allocated for events in messages
than needed to notify them).

6

TABLE II
EVENT NOTIFICATION SCHEMES BASED ON CONVENTIONAL CAN (FLAT, BITMAPS, AND LISTS)

Scheme D (B) ID ES Em Vm w ΛS (kHz) λm (kHz) Notes

CAN flat (baseline) 0 std ∼2 · 210 (2.05 · 103) 1 1 — 21.28 ·R 21.28 ·R one message per event
CAN flat (baseline) 0 ext ∼512 · 220 (537 · 106) 1 1 — 14.93 ·R 14.93 ·R one message per event

CAN bitmap 1 std ∼16 · 210 (16.4 · 103) 8 8 — 145.45 ·R ν̄m · 18.18 ·R ν̄m refers to a single message
CAN bitmap 1 ext ∼4 · 230 (4.29 · 109) 8 8 — 106.67 ·R ν̄m · 13.33 ·R ν̄m refers to a single message
CAN bitmap 8 std ∼128 · 210 (131 · 103) 64 64 — 576.58 ·R ν̄m · 9.01 ·R ν̄m refers to a single message
CAN bitmap 8 ext ∼32 · 230 (34.4 · 109) 64 64 — 488.55 ·R ν̄m · 7.63 ·R ν̄m refers to a single message
CAN FD bitmap 64 std ∼1 · 220 (1.05 · 106) 512 512 — 884.28 ·R ν̄m · 1.73 ·R ν̄m refers to a single message
CAN FD bitmap 64 ext ∼256 · 230 (275 · 109) 512 512 — 856.19 ·R ν̄m · 1.67 ·R ν̄m refers to a single message

CAN list 8 std ∼30 · 210 (30.7 · 103) 15 16 4 144.14 ·R ν̄m · 9.01 ·R ν̄m refers to a single message
CAN list 8 ext ∼7.5 · 230 (8.05 · 109) 15 16 4 122.14 ·R ν̄m · 7.63 ·R ν̄m refers to a single message
CAN list 8 std ∼510 · 210 (522 · 103) 255 8 8 72.07 ·R ν̄m · 9.01 ·R ν̄m refers to a single message
CAN list 8 ext ∼128 · 230 (137 · 109) 255 8 8 61.07 ·R ν̄m · 7.63 ·R ν̄m refers to a single message
CAN list 8 std ∼128 · 220 (134 · 106) 65535 4 16 36.04 ·R ν̄m · 9.01 ·R ν̄m refers to a single message
CAN list 8 ext ∼32 · 240 (35.2 · 1012) 65535 4 16 30.53 ·R ν̄m · 7.63 ·R ν̄m refers to a single message
CAN FD list 64 std ∼510 · 210 (522 · 103) 255 64 8 110.54 ·R ν̄m · 1.73 ·R ν̄m refers to a single message
CAN FD list 64 ext ∼128 · 230 (137 · 109) 255 64 8 107.02 ·R ν̄m · 1.67 ·R ν̄m refers to a single message
CAN FD list 64 std ∼128 · 220 (134 · 106) 65535 32 16 55.27 ·R ν̄m · 1.73 ·R ν̄m refers to a single message
CAN FD list 64 ext ∼32 · 240 (35.2 · 1012) 65535 32 16 53.51 ·R ν̄m · 1.67 ·R ν̄m refers to a single message

In theory, more than one message can be allocated to each
node in order to enlarge Esi , but this is usually pointless
because, with event lists, the same goal can typically be
achieved more effectively by a proper selection of w. For
example, by setting w = 16 then ES = |MS| · 65535 (while
Vm = 4 events per message). It is worth pointing out that
many different ways exist to encode the list of pending events.
For instance, efficiency can be further increased by resorting
to Huffman codes, so that more frequent events take less bits
and can be packed more densely. A thorough analysis of these
aspects is beyond the scope of this paper.

3) Bloom filters: Applying Bloom filters to hierarchical
schemes over conventional CAN has little practical relevance.
As said above, their use can be advantageous with respect to
bitmaps when the number of distinct events that can be gener-
ated by a node is huge (in theory, sets Em with unlimited size
are supported) but their occurrence is rare, and false positives
may be occasionally tolerated. For instance, when events are
encoded using this approach in a classical CAN frame with
maximal size using k = 5 hash functions (increasing this value
excessively is likely a bit tricky), the probability Pfp of false
positives does not exceed 0.00633% when up to Vm = 2 events
are conveyed in m, but increases to 0.139% and 2.17% when
the events are 4 and 8, respectively [13].

However, using an event list and allocating the whole data
field to encode at most Vm = 2 events (i.e., setting w = 32),
yields (about) the same notification rate and permits to deal
potentially with up to 232 distinct events per message (which
is far beyond most reasonable applications’ needs), but does
not lead to any false positives. For this reason, we will not
analyze Bloom filters over conventional CAN in detail.

VII. MAPPING EVENTS ON CAN FD MESSAGES

Basically, the same considerations made above for classical
CAN also hold for CAN FD. The main difference is that, the

data field can consist of up to 64 bytes (i.e., 512 bits) instead
of 8, which means that the number of events Vm that can fit
in every message increases sensibly, in spite of the slightly
worse overhead due to the larger frame header and trailer.

Exploiting bit-rate switching [14], [15], which consists in
increasing the network bit rate during data transmission (with
the exception of the initial and final parts of the frame, where
arbitration and acknowledgment are carried out, respectively)
usually leads to noticeably shorter transmission times, even
when the larger payload size achieved by CAN FD is used.

A. Hierarchical event mapping

Using flat mapping is hardly advantageous when CAN FD
is taken into account, since the larger payload (up to 64 bytes)
is left unused. For this reason, only the case of hierarchical
mapping is considered in the following.

1) Event Bitmap: When the data field contains a bitmap,
the maximum number of distinct events that can be encoded in
a single message grows by a factor 8 with respect to classical
CAN. In particular, up to Em = Vm = 512 events are made
available for any message m (and can be included in it), which
implies that one message per node is often sufficient. System-
wide we have ES = |MS| · 512 events.

When Dm = 512 the maximum notification rate Λstd
S =

Λstd
m = 884.28 · 10−3 ·R is ∼53% higher than using bitmaps

with classical CAN, while the effective notification rate is
λstdS ' λstdm = ν̄m · 1.73 · 10−3 · R. Since unlikely all the
local events will become active at the same time, the higher
payload of CAN FD is going to be wasted most of the
times, which means that throughput actually decreases. As a
consequence, in order to globally increase ES, switching to the
extended CAN identifier format is probably a better solution
than moving from CAN to CAN FD.

2) Event List: The larger payload offered by CAN FD
can be useful also with event lists. For instance, for any

7

given size w of the patterns on which events are encoded,
message capacity increases to Vm = b64Dm/wc events. It
is worth pointing out that the maximum notification rate ΛS

only improves marginally with respect to classical CAN (for
example, 110.54·R vs. 72.07·R when w = 8 bits, and 55.27·R
vs. 36.04 ·R when w = 16).

Moreover, as for bitmaps, increasing too much the number
of events that can be collected by a node into the same message
is often pointless, because bandwidth may be wasted uselessly.

3) Bit rate switching: Bit rate switching in CAN FD (by
setting BRS to recessive) is an effective way to improve
the notification rate. In this case, the transmission speed is
increased for the part of frame included between the sampling
points of the BRS bit and the CRC delimiter. For the FD base
format (FDFF), this means that 29 bits (arbitration field, initial
part of the control field, and most of the trailer) are sent at
the nominal bit rate R, while 38 + 8D bits (final part of the
control field, plus data and CRC fields) are transmitted at the
(higher) data bit rate α · R. For example, when α = 5 and
Dm = 512, the maximum notification rate, when bitmaps are
used, can be as high as Λm = 3683.5 · 10−3 · R (the largest
value achievable in CAN). However, when its effective value
is considered, it shrinks to λstdm = ν̄m · 7.19 · 10−3 ·R, slightly
lower than when bitmaps are used with maximal-size classical
CAN frames.

Table II reports a synoptic about the simple performance
metrics we considered, for a number of approaches based on
conventional CAN (either classical or FD), which rely on flat
message assignment, event bitmaps, and event lists. The most
interesting columns are Em and λm. Calculations about the
event notification rate in overclocked CAN FD are quite trivial,
and hence no values are explicitly included in the table.

VIII. MAPPING EVENTS ON CAN XR SHARED SLOTS

Static slots offered by the CAN XR proposal permit multiple
nodes to write dominant values in selected parts of the
data field of the same message. It is worth remarking again
that compliance to the CAN and CAN FD frame formats,
including proper bit stuff insertion, is carried out by the
initiator/supervisor, irrespective of the values the event sources
(modeled as XR responders) actually write on the bus. We
verified the proper operation of CAN XR by means of an
experimental campaign on a software-defined CAN controller.

This behavior can be exploited to increase the event no-
tification rate. In order not to loose the ability to carry out
notifications in a truly distributed way, the implicit initiator
feature of CAN XR has to be exploited [9]. In practice,
any node wishing to notify an event initiates the related
XR transaction on the bus. If there are other nodes in the
same conditions, they join the data exchange as responders,
including their events in the data field.

Let XS =
{
x1, ..., x|XS|

}
be the set of XR transactions

defined in the system to support event notifications. Although
they are almost indistinguishable from other CAN messages,
a different symbol has been used to improve clarity.

,,,ARB+CTRL CRC+EOF

si’

xj

eg’

Source node(s) CAN message(s) Event(s)

g’
h1

h2

h3

g
h1

h2

h3

si

eg

eg’’

Filters on
sink node(s)

False positive

Fig. 2. Mapping of events in CAN XR using Bloom filters.

A. Mapping through event bitmaps

The data field of a CAN XR frame (or part of it) can be
seen by nodes as made up of an array of slots, where each
slot takes exactly one bit. A dominant slot value denotes the
presence of the event, whereas a recessive value stands for its
lack. If event mapping is flat, slots are shared among nodes
and globally assigned to specific events, so that any node can
set their value dominant. This is useful when the same event
could be raised by a plurality of distinct sources. Conversely, if
mapping is hierarchical, then each slot is exclusively assigned
to a specific node. In this specific case, event lists can be
employed as well, besides bitmaps, which require the size of
the slots to be enlarged to w > 1 bits. Mixed solutions are
also possible, but they are not considered here.

As the frame format in CAN XR is exactly the same as
CAN/CAN FD, the maximum number Ex of events that can
be mapped onto an XR message x, and the maximum number
Vx of events that can be included in one of its instances,
are the same as in non-XR cases. This also means that
performance metrics, apparently, do not vary, for example,
ES = |XS| · Ex. However, events in CAN XR are allocated
to slots network-wide, and not on a per-node basis. This may
lead to a dramatic improvement of the effective capacity of the
network to quickly deliver notifications, since a single CAN
XR message can collect events generated, almost at the same
time, by a plurality of nodes. In this way, a larger number of
pending events are likely to be collected in the same message
than in the case of conventional CAN, where event gathering
can be carried out only in hierarchical schemes and on a local
basis.

Roughly speaking, in solutions based on conventional CAN
messages, like those analyzed in the previous sections, the
average number of pending events network-wide can be ap-
proximated as ε̄S = |MS| · ε̄m, while in CAN XR they are
ε̄′S = |XS| · ε̄x. In systems with a large number of devices, each
of which generates a small number of events, |XS| � |MS|.

8

TABLE III
EVENT NOTIFICATION SCHEMES BASED ON CAN XR (BITMAPS AND BLOOM FILTERS)

Scheme D (B) ID ES Ex Vx w̄ ΛS (kHz) λx (kHz) Pfp Notes

XR bitmap 64 std ∼1 · 220 (1.05 · 106) 512 512 — 884.28 ·R ν̄x · 1.73 ·R 0% ν̄x refers to a single XR message
XR bitmap 64 ext ∼256 · 230 (275 · 109) 512 512 — 856.19 ·R ν̄x · 1.67 ·R 0% ν̄x refers to a single XR message

XR Bloom 64 std ∞ ∞ 64 8 110.54 ·R ν̄x · 1.73 ·R 2.17% ν̄x refers to a single XR message
XR Bloom 64 std ∞ ∞ 32 16 55.27 ·R ν̄x · 1.73 ·R 0.139% ν̄x refers to a single XR message
XR Bloom 64 std ∞ ∞ 16 32 27.63 ·R ν̄x · 1.73 ·R 0.00633% ν̄x refers to a single XR message

For instance, if there are 100 nodes and 500 events, |MS| has
to be at least 100. Conversely, a single XR transaction (i.e.,
|XS| = 1) mapped on an FD frame permits to encode all such
events at once using a bitmap. If ε̄′S was equal to ε̄S, then
ε̄x � ε̄m, which means that, on average, a larger number of
pending events can be collected together, and hence a smaller
portion of the capacity of XR messages goes wasted. In reality,
improvements are not so high since, due of the higher capacity
of XR-based solutions to drain notifications, the mean number
of pending events (all over the system) shrinks, i.e., ε̄′S < ε̄S.

The price to pay for the increase in the overall notification
rate is that the maximum number of distinct events that can be
defined system-wide is relatively small. Using multiple CAN
XR messages, on which distinct events are mapped, permits to
overcome this limitation. If a number |XS| of such messages
are used, on which different global events are encoded as a
bitmap, then ES = |XS| · 512 (in the case XR transactions are
mapped on FD frames). When doing so, however, events are
scattered across more than one XR message, which means that
ε̄x is likely to decrease by about the same factor, and so does
the effective notification rate λx. Again, the best option is to
use as few messages as possible.

B. Bloom Filters

As Fig. 2 shows, applying Bloom filters to event notification
in CAN XR is quite straightforward:

1) A shared slot is defined in the data field of a CAN XR
message (possibly taking all D bytes) and used as the
supporting data structure. Basically, it mimics a shared
bitmap made up of m = 8D entries.

2) When an event eg has to be notified, the related source
determines which bits have to be set dominant by eval-
uating k independent hash functions hi(g), 1 ≤ i ≤ k,
in g, each of which returns an index in the range
[0...m− 1]. More than one event may be included by
each node in the same message.

3) The dominant–recessive behavior of the CAN bus is ex-
ploited to merge results. Having a node writing dominant
values on specific bits of a shared slot corresponds to
the insert-only operation carried out by Bloom filters on
the data structure.

4) The content of the shared slot in the CAN XR message
exchanged on the bus corresponds to the data structure
after all the pending events have been inserted. This
frame is received by all sinks at the same time.

Clearly, it is just impossible for a sink to obtain the original
events back: in fact, Bloom filters rely on hash functions
and are not intended to be reverted. However, every sink
can easily assess whether or not the events it is interested
in have been included by the related source. Simply, it has to
evaluate the hash functions for these events, and check if all
the corresponding bits in the received message are dominant.

What is particularly relevant about Bloom filters coupled
with CAN XR shared slots is that they permit to map events
drawn from a very large set (much larger than allowed by a
bitmap) onto one (or few) XR messages. This makes them
advantageous for systems where a huge amount of distinct
events are foreseen (many thousands to millions), generated
by a large number of devices (many hundreds), but each one
of them occurs seldom.

By referring to the typical notation used for Bloom filters,
reported in Section IV, the number n of elements inserted in
an XR transaction x is on average ν̄x, and, if the whole data
field is used as the supporting data structure, the related size
is m ≡ 8Dx. Let w̄ = m/n = 8Dx/ν̄x be the mean number
of bits per event in x. The probability of false positives Pfp

depends on w̄ and, to a lesser extent, k. When using Bloom
filters, ν̄x = ε̄x because all pending events can in theory be
collected in the same XR message. If only one message is
considered in the system, then ε̄S = ε̄x and, consequently,
ν̄x = ε̄S. In this case, w̄ = 8Dx/ε̄S.

As an example, let us assume that, on average, ε̄S = 64
events are pending, at any time, network-wide, which have to
be notified as soon as possible, and that Dx = 64 bytes (i.e.,
512 bits). This means that w̄ = 8 bits in each XR message are
allocated on average per event. In such conditions, the overall
effective notification rate is λS = 110.53 · 10−3 · R. When
ε̄S is cut by half and by 4 (which means that w̄ = 16 and
32 bits), the notification rate λS falls to 55.27 · 10−3 · R and
27.63 ·10−3 ·R, respectively. According to Section VI-B3, the
probability Pfp of false positives for these three cases, when
k = 5, is about 2.17%, 0.139%, and 0.00633%.

A synoptic about the metrics we took into account, for the
case of CAN XR, when either bitmaps and Bloom filters are
adopted, is shown in Table III. As can be seen, Bloom filters
have two main disadvantages with respect to the case when a
bitmap is directly coupled with CAN XR: first, the notification
rate is noticeably lower (ten times or more), and second, false
positives are possible. However, they also show a peculiar
advantage, since the number of events that can be potentially

9

defined in the system, even with a single XR message, is
virtually unlimited, ES =∞.

For these reasons, Bloom filters on CAN XR are mostly
suitable for dealing with rare events in large systems, and
should be more correctly compared against classical CAN so-
lutions which rely on either a flat mapping on extended frames
(ES ' 537 · 106, Λext

S = 14.93 · 10−3 · R) or a hierarchical
mapping using event lists where, e.g., Dm = 2 bytes and
w = 16 bits (ES ' 134 · 106, Λext

S = ε̄S · 15.87 · 10−3 · R).
When false positives up to 2.17% are tolerated, coupling CAN
XR and Bloom filters is about 7 times faster than CAN.

An important aspect to be taken into account when using
CAN XR with Bloom filters is that the number of events
system-wide to notify at any given time is not known a
priori, and cannot be checked at run time because there is
no coordination among nodes. While the number of events
that can be “inserted” in an XR message is unbounded, when
it increases above the expected value the probability of false
positives may become unacceptably high. So as to lower the
likelihood of this condition happening, multiple XR messages
can be foreseen, and events can be scattered among them in
the configuration phase. Importantly, in this case increasing
the number of messages is not meant to enlarge ES, but just
to reduce statistically the occurrence of false positives.

IX. CONCLUSIONS

Controller Area Networks are very suitable to interconnect
devices in event-driven systems, where interactions occur
asynchronously. Besides real-time applications, they can be
profitably employed also in those cases where information to
be exchanged is characterized by relaxed timing constraints.
For instance, wired sensor networks used for online diag-
nostics, as well as for reactive and proactive maintenance,
can be inexpensively implemented and deployed using this
communication technology.

In this paper, best-effort techniques for efficiently managing
event notifications in such a kind of systems have been
considered, and their performance evaluated by means of quite
simple and generic metrics, like the maximum number of
distinct events supported by each solution and the rate at which
events are transferred from sources to sinks over the network.
Concerning the underlying communication technology, both
classical CAN and CAN FD have been taken into account,
also including the recent CAN XR proposal, which enables
data slotting in CAN without losing backward compatibility

Results show that CAN XR, by allowing multiple nodes to
be writing at the same time into the same message, permits
a higher number of events to be collected (and exchanged)
together, which in turn increases the effective overall notifi-
cation rate. The use of Bloom filters, possibly coupled with
CAN XR, is useful in the case of systems where a very large

with existing devices and systems. To improve communication
efficiency, techniques can be employed that allow a set of
events to be gathered in the same message. Besides obvious
solutions like bitmaps and lists, Bloom filters were also
considered to this purpose.
number of rare events are defined, provided that false positives
are occasionally tolerated.

As future work we plan to assess performance by consider-
ing some specific event generation schemes for nodes. Doing
so will probably require a suitable ad-hoc simulator to be
purposely developed.

ACKNOWLEDGMENT

This research has been supported in part by the US National
Science Foundation (CNS Grant No 1646317).

REFERENCES

[1] ISO, ISO 11898-1:2015 – Road vehicles – Controller area network
(CAN) – Part 1: Data link layer and physical signalling, International
Organization for Standardization, Dec. 2015.

[2] CiA, CiA 301 V4.2.0 – CANopen application layer and communication
profile, CAN in Automation e.V., Feb. 2011.

[3] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “Design,
verification, and performance of a MODBUS-CAN adaptation layer,”
in Proc. 10th IEEE International Workshop on Factory Communication
Systems (WFCS), May 2014, pp. 1–10.

[4] CAN with Flexible Data-Rate Specification Version 1.0, Robert Bosch
GmbH, Apr. 2012.

[5] H. A. Hansson, T. Nolte, C. Norstrom, and S. Punnekkat, “Integrating re-
liability and timing analysis of CAN-based systems,” IEEE Transactions
on Industrial Electronics, vol. 49, no. 6, pp. 1240–1250, Dec. 2002.

[6] R. Davis, A. Burns, R. Bril, and J. Lukkien, “Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised,” Real-
Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[7] R. I. Davis and N. Navet, “Controller area network (CAN) schedulability
analysis for messages with arbitrary deadlines in FIFO and work-
conserving queues,” in Proc. 9th IEEE International Workshop on
Factory Communication Systems (WFCS), May 2012, pp. 33–42.

[8] M. Di Natale and H. Zeng, “Practical issues with the timing analysis
of the Controller Area Network,” in Proc. 18th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), Sept 2013, pp.
1–8.

[9] G. Cena, I. Cibrario Bertolotti, T. Hu, and A. Valenzano, “CAN
XR: CAN with eXtensible in-frame Reply,” in Proc. 14th IEEE Intl.
Conference on Industrial Informatics (INDIN), Jul. 2016, pp. 1198–
1201.

[10] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, Jul.
1970.

[11] S. Tarkoma, C. E. Rothenberg, and E. Lagerspetz, “Theory and practice
of Bloom filters for distributed systems,” IEEE Communications Surveys
Tutorials, vol. 14, no. 1, pp. 131–155, 2012.

[12] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: a scal-
able wide-area Web cache sharing protocol,” IEEE/ACM Transactions
on Networking, vol. 8, no. 3, pp. 281–293, Jun. 2000.

[13] P. Cao, “Bloom filters — the math,” Available online, at http://pages.cs.
wisc.edu/∼cao/papers/summary-cache/node8.html, Mar. 2017.

[14] G. Cena and A. Valenzano, “Overclocking of Controller Area Networks,”
Electronics Letters, vol. 35, no. 22, pp. 1923–1925, Oct. 1999.

[15] F. Hartwich, “CAN with flexible data-rate,” in Proc. Intl. CAN Confer-
ence (iCC), Mar. 2012, pp. 14-1–14-9.

10

