
OS Support for Detecting Trojan Circuit Attacks
Gedare Bloom, Bhagirath Narahari, and Rahul Simha

Dept. of Computer Science,George Washington University, Washington, DC 20052
E-mail: {gedare,narahari,simha}@gwu.edu, Tel: (202) 994–7181, Fax: (202) 994–4875

Abstract—Rapid advances in integrated circuit (IC) develop-
ment predicted by Moore’s Law lead to increasingly complex,
hard to verify IC designs. Design insiders or adversaries em-
ployed at untrusted locations can insert malicious Trojan circuits
capable of launching attacks in hardware or supporting software-
based attacks. In this paper, we provide a method for detecting
Trojan circuit denial-of-service attacks using a simple, verifiable
hardware guard external to the complex CPU. The operating
system produces liveness checks, embedded in the software clock,
to which the guard can respond. We also present a novel method
for the OS to detect a hardware-software (HW/SW) Trojan
privilege escalation attack by using OS-generated checks to test
if the CPU hardware is enforcing memory protection (MP).
Our implementation of fine-grained periodic checking of MP
enforcement incurs only 2.2% overhead using SPECint 2006.

I. I NTRODUCTION

The economic strain of fabricating at ever smaller scales has
led to stratification of the semiconductor industry. IC design,
fabrication, verification, and integration are often conducted
at different sites under different authority which increases
risk by requiring multi-party trust. Because of these risks,
malicious parties can threaten the security of the IC design
and fabrication processes (the IC supply-chain).

One security threat to the IC supply-chain is theTrojan
circuit (also known as hidden malicious circuit and hardware
Trojan), a malicious insertion to or modification of an IC
that can occur any time between design and fabrication. An
attacker can use a Trojan circuit to carry out attacks which,
if undetected, may easily compromise the device relying on
the subverted IC. Initial research in to Trojan circuits focused
primarily on hardware-only attacks. Two particular Trojan-
enabled attacks, denial-of-service and (sensitive) information
leakage, dominate the literature. DoS attacks appear to have
garnered the most attention [1]; however, King et al. [2]
demonstrate more intricate attacks that involve malicioussoft-
ware interacting with the Trojan circuit.

We use the termHW/SW Trojanfor situations involving the
collusion of malicious software with Trojan-infected hardware,
or where attackers as King et al. put it, “design hardware
to support attacks” [2] rather than hard-code the attack it-
self in hardware. Two hardware mechanisms for HW/SW
Trojans were presented by King et al., a memory access
mechanism and a shadow mode mechanism. Leveraging the
memory access mechanism, they created malicious software
that escalates its privilege to that of the superuser (root).
Two software services were implemented using the shadow
mode mechanism, one to insert a login backdoor and the
other to steal passwords. To defend against these attacks, King

et al. suggest detection by observing the analog and digital
perturbations introduced by Trojan circuits.

The main focus of our work is on defending against such
HW/SW Trojans; specifically, we target the memory access
mechanism with the privilege escalation attack. A secondary
contribution is in detection of restricted denial-of-service
(DoS) attacks. We assume a relatively simple Trojan circuit
that does not authenticate the malicious software. On one hand,
if the Trojan circuit knows when malicious software is running,
then attacks could be much harder to detect. On the other hand,
such a Trojan circuit would be more complex, and thus larger
and arguably easier to detect using side-channel analysis.

Current defense techniques for Trojan circuits primarily in-
volve IC verification through testing and side-channel analysis.
We propose to add another complementary layer of techniques
to provide runtime detection for those Trojan circuits that
slip past the chip verification and test phase. In particular,
we assume a trusted operating system which we modify to
create two types of checks on the hardware. First, we create
liveness checks in the form of randomized off-chip accesses
to a simple hardware module, called aguard. We assume the
guard hardware is verifiable due to its simplicity, and we use
this simpler, off-chip hardware to monitor behavior of a very
complex IC. Second, we add memory protection (MP) checks
as code executing in unprivileged mode that attempts to access
privileged memory areas. Liveness checks provide restricted
DoS detection, and MP checks detect the privilege escalation
attack discussed above.

Checks produced by the OS have an impact on the sys-
tem’s runtime performance. Liveness checks introduce min-
imal overhead because they occur as part of the existing
periodic interrupt used by commodity OSs to manage task
switching. However, executing checks may introduce a lot
of overhead depending on the mechanism and periodicity of
checking MP mechanisms – one of the goals in our research
is to evaluate and to minimize such overhead. In order to
determine how often MP enforcement must be verified, we
re-implemented the privilege escalation attack and found that
malicious software only needs MP mechanisms to be turned
off for about 15–20µs on our system. To provide such fine-
grained checking, we use a real-time OS extension to Linux
and we achieved 2.2% overhead averaged across SPECint
2006. These results are shown in Section III. We next present
the details of the OS-generated liveness and MP checks.



Main

Memory
Guard

Data

Bus
CPU

Fig. 1. System Architecture. A verifiable hardware module (guard) is added
to the memory hierarchy. The OS will use the guard to verify thatthe CPU
is trustworthy.

Proc.
store

load

store

load

rst
Osc. RAM

Fig. 2. Hardware Guard Internals. The guard contains an oscillator, storage
space, and processing logic. If an attack is detected, the guard can reset the
CPU (via the RST line) or can provide notification to an external entity.

II. OS CHECKS FORHARDWARE VERIFICATION

At a high level, our solution is conceptually simple. As
shown in Fig. 1, we add an off-chipguard, which is made of
easily verifiable hardware, to implement light-weight checks of
the untrusted CPU. For detecting DoS, we introduce liveness
checks that go off-chip to the guard at pseudorandom intervals
by using the OS timer interrupt. To detect the privilege
escalation attack, we adopt real-time OS (RTOS) mechanisms
for MP checks. By modifying the OS to be guard-aware, the
OS can check for HW/SW Trojan attacks.

A. Assumptions and Scope

We make a few key assumptions in our research. First,
the OS and guard are presumed to be trusted and verified.
Second, the guard is assumed to have a precise notion of
timing, using an oscillator as shown in Fig. 2. Third, non-
cacheable accesses to memory can be made by the OS, which
is possible with most cache controllers and is exposed by most
OSs, for example the ZONEDMA area of Linux.

Some limitations to the scope of our research are also worth
noting. First, we only attempt to protect against two particular
attacks, DoS and privilege escalation (through disabled MP).
Further, the DoS detection is restricted to verifying that the
OS is receiving timer interrupts. Second, we focus only on
the CPU as being possibly malicious – peripherals are trusted.

B. Hardware Guard

The guard is a verifiable hardware module that is placed off-
chip and provides a verifier for the OS to test the CPU. Fig.
2 shows the internal components of the guard, including an
oscillator for timing, scratch RAM for storing pseudorandom
values, and a simple processor. The guard observes memory
accesses to detect OS-generated checks. A timer is managed
by the processing logic and synchronized with the CPU’s timer
interrupts. When a check is received, a watchdog (countdown)
timer is set to a pseudorandom value. If the watchdog times
out, the guard detects an attack and can reset the CPU or notify
another entity (e.g. a human).

C. Liveness Checks

For DoS detection we add liveness checks, a similar con-
cept to the heartbeats from our prior work [3], but now
implemented in the OS instead of as part of applications.
These liveness checks are pseudorandom non-cached memory
accesses, which prevents simple prediction, delay, and replay
attacks. A significantly delayed liveness check triggers DoS
detection. Note that by liveness we mean that the CPU is
providing the OS with correct timing interrupts; we can check
for liveness because the guard can synchronize with the
expected time interrupts of the CPU. This notion of liveness
is overly simplistic (and ignores progress), and thus the DoS
detection is restricted.

The OS generates the liveness checks as part of the regular
timer-interrupt. In our implementation, the liveness checks
were added to thedo_timer function in Linux, which is
invoked every 1 ms to update the software clock and perform
various kernel bookkeeping tasks.do_timer is architecture-
independent, so our modification is fully portable and nonin-
vasive. Before the number of expected ticks have elapsed since
the last liveness check was sent, the OS sends a fresh check.
The overhead of liveness checking is minimal when aligned
with the existing periodic interrupt used by commodity OSs
to manage task switching.

As each liveness check is received by the guard, the guard
determines how many ms until the next check should arrive
by obtaining the next value in the pseudorandom sequence.
Computing this sequence is not time-critical, because at least
1 ms will elapse before the next liveness check might be
expected. Thus computing the next value in the sequence can
be complex without degrading performance or security.

An obvious problem is in providing the OS with the ability
to generate the sequence without exposing the pseudorandom
seed (or state) to the Trojan circuit. This problem is actually
an instance of a more general problem: How to hide a variable
from a Trojan circuit. We do not yet have a complete solution
to this problem. By randomizing the location of the variable
it can be hidden from simple Trojan circuits, but loading the
variable to a register may expose the value. Another possibility
is for the guard to instrument binary re-writing of the OS code
that implements the liveness check, thus allowing the values
to be inserted indirectly in the control flow. The problem
of securing a variable from a Trojan circuit is an area that
requires further research. We suspect obfuscation techniques
might increase the burden so that any Trojan circuit capable
of reverse-engineering the obfuscation will be detectableby
side-channel analysis.

D. Memory Protection (MP) Checks

King et al.’ privilege escalation attack is a straightforward
HW/SW Trojan attack. First, the Trojan circuit is somehow
triggered by software to turn off memory protection (MP);
without MP, the memory space of the OS can be accessed
by any process. Next, malicious software accesses the OS’s
process list, shown in Fig. 3 and searches for its own process
control block (PCB).



... ...

euid: 1
pid: my_pid

euid: 0
pid: 1

targetinit

Fig. 3. Privilege Escalation Attack. Malicious software walks the list
searching for its own process control block (PCB), then setsthe effective
user ID (EUID) to the superuser, which is 0 for Linux.

By changing the effective user ID (EUID) field of the PCB
to be the superuser, the SW Trojan elevates its privilege; turn-
ing MP back on closes the vulnerability and makes detection
harder. The following C-like code demonstrates the attack:

task = 0xc07093e0;
pid_offset = 464;
euid_offset = 676;

/* tell Trojan circuit to disable MP */
disable_prot();

/* find the PCB with my_pid */
do {
task = next_task(task);

} while (*(task+pid_offset) != my_pid);

/* privilege escalation */

*(task+euid_offset) = 0;
enable_prot();

Here task is initialized to the head of the process list;
in Linux, this is the init task symbol in/proc/kallsyms.
Values forpid_offset andeuid_offset are the offsets
in the PCB of the process ID and the EUID.disable_prot
is how the SW Trojan requests the Trojan circuit to disable
MP. The SW Trojan searches the process list until finding the
PCB with a process ID matchingmy_pid, sets the EUID to
be 0 (root on Linux), then requests MP be enabled.

We implemented the above code, and searching the list
takes about 15–20µs under low load. Thus, one of our goals
is to check at least every 15µs that MP protection is still
on. Because Linux provides at most 1000 Hz frequency for
scheduling, a full millisecond elapses between scheduling
events. Therefore, we chose to investigate real-time scheduling
in Linux as a way to achieve fine-grained verification.

We use a RT scheduler that can schedule tasks with a
fixed period and duration. We chose the Xenomai Real-Time
Framework for Linux [4], which provides RT scheduling.
Fig. 4 shows how Xenomai fits in to the hardware-software
interface. Xenomai is implemented as a patch of Linux plus
a library to access the RT infrastructure. If there are no RT
tasks to schedule, Xenomai invokes the Linux scheduler. RT
tasks have limited library support, restricted to code exported
by Xenomai and a limited subset of the Linux kernel API.
This limitation does not affect our solution, because the MP
check only requires a raw memory accesses.

Xenomai Kernel

Linux Kernel

RT

Tasks

Hardware

Applications

Fig. 4. Xenomai Extension to Linux. Xenomai conceptually layers a thin
kernel under Linux that can provide real-time (RT) scheduling of RT tasks.
In reality, Xenomai extends the Linux kernel and is integrated as part of the
OS, which reduces potential performance overheads of switching in and out
of the Xenomai kernel functionality.

0 5 10 15 20

Fig. 5. RT Task Scheduling in Xenomai (µs scale). The MP check is a RT
task with a period of 15µs, shown in light blue. When the RT task is not
being executed, Xenomai invokes the regular Linux schedulerwhich executes
tasks as normal, shown in dark green.

We created a RT task usingrt_task_set_periodic
with period 15µs. The RT task attempts to read memory in
the kernel address space – an MP check – and then sleeps by
calling rt_task_wait_period. Fig. 5 shows the runtime
behavior of scheduling this task (in light blue) and for the
rest of the software stack, including Linux and applications
(in dark green).

III. E VALUATION

Liveness checks in the regular OS clock provide detection
of DoS with a few instructions in the timer interrupt. Memory
protection (MP) checks, in the form of user-space attempts to
access directly the kernel’s address space, provide detection of
a privilege escalation attack window. We measure the overhead
of our solution on commodity hardware with SPECint 2006
[5].

We evaluated the performance of our system using Linux
and Xenomai. All experiments were conducted on an Intel
Core-2 2.0 GHz with 2 GB RAM, running Linux version
2.6.25.11 in Fedora Core 7. We removed all non-essential
modules from the Linux image, and we disabled power man-
agement functions. This was the baseline against which our
results are normalized. For the liveness checks, we added in-
structions to the software timer interrupt handlerdo_timer.
For the RT extensions to Linux, we used Xenomai version
2.4.4 and we ran MP checking tasks pinned to each core.

We ran all of the SPECint benchmarks three full runs (re-
portable) and took the median of the three runs per benchmark.
We also give an average across these medians. The SPEC
benchmarks were compiled with-O2.

Fig. 6 shows the overhead for the Xenomai extension
(RTOS) both with and without issuing MP checks. The results



Fig. 6. Overhead of Real-Time OS Solution Compared to Unmodified
Linux. By adding real-time scheduling capabilities to the OS, low-overhead
software checks can be periodically scheduled for every 15–20µs. MP Checks
shows that using RTOS support for enforcement checking incurs 2.2% average
overhead compared to unmodified Linux.

show that Xenomai alone added 0.9% average overhead to
the unmodified kernel, and that Xenomai with the MP checks
adds 2.2% overhead on average. The largest overhead for MP
checks was 5.1% and the lowest was negligibly small.

Although we have focused on the privilege escalation attack
and MP checks, extending our solution to other privileged ac-
cesses is trivial. We implemented checks executing privileged
instructions without having the highest current privilegelevel
(CPL). These CPL checks are similar to MP checks: Short
enough to have low overhead and verifiable by a hardware
guard that is monitoring the instruction stream.

IV. RELATED WORK

Two primary methods of detection are current research
trends in Trojan detection: logic-based testing [6]–[9] and
side-channel analysis [10]–[13]. Other literature in the field
discusses alternate defense methods [3], [14], [15]

Our current and prior work [3], in contrast to most other
techniques, focuses on detecting Trojan circuits in deployed
devices. In other words, we provide another layer of defense
in case a Trojan circuit avoids detection. On-line detection is
by no means our contribution: others have discussed measuring
and reporting physical characteristics with on-chip sensors
[14]. Similarly, the time-tested replication of entire processing
elements can help to detect some Trojan circuit attacks [2],but
the overhead is likely to be unbearable for full state-machine
replication. Our approach is complementary to existing run-
time techniques, and our research focuses on minimizing the
overhead of runtime checks for Trojan circuits.

V. CONCLUSION

The area of runtime detection of Trojan circuits is rife
with research opportunities. By adding liveness checks to
Linux, we are able to provide detection of some Trojan
circuit DoS attacks. We have also shown how to detect a
privilege escalation HW/SW Trojan attack through the use of

periodic checks of memory protection mechanisms using a
RT extension to Linux. Using a RTOS for generating checks
provides an interesting platform for the OS to detect HW/SW
Trojan attacks. By timing how large of an attack window a
particular exploit requires, the OS can probe the hardware to
check for runtime vulnerabilities. Although our solution is just
a patch for a known attacks, the defense technique we propose
is effective, efficient, and novel. Our results are encouraging,
with a low 2.2% average overhead for periodic checking of the
memory protection mechanisms and negligible overhead for
the DoS detection. These detection techniques are compatible
with existing Trojan circuit detection techniques.

ACKNOWLEDGMENT

This work is partially supported by NSF grants ITR-025207
and CNS-0934725, and AFOSR grant FA955006-1-0152.

REFERENCES

[1] S. Adee, “The hunt for the kill switch,”Spectrum, IEEE, vol. 45, no. 5,
pp. 34–39, 2008.

[2] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” inProceedings of
the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats.
San Francisco, California: USENIX Association, 2008, pp. 1–8.

[3] G. Bloom, B. Narahari, R. Simha, and J. Zambreno, “Providingsecure
execution environments with a last line of defense against trojan
circuit attacks,” Computers & Security, 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2009.03.002

[4] P. Gerum, “Xenomai - implementing a RTOS emulation
framework on GNU/Linux,” 2004. [Online]. Available:
http://www.xenomai.org/documentation/branches/v2.3.x/pdf/xenomai.pdf

[5] Standard Performance Evaluation Corporation, “SPEC CPU2006.”
[Online]. Available: http://www.spec.org/cpu2006/

[6] S. Smith and J. Di, “Detecting malicious logic through structural
checking,” in Region 5 Technical Conference, 2007 IEEE, 2007, pp.
217–222.

[7] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards
trojan-free trusted ICs: problem analysis and detection scheme,” in
Proceedings of the conference on Design, automation and test in Europe.
Munich, Germany: ACM, 2008, pp. 1362–1365.

[8] R. Chakraborty, S. Paul, and S. Bhunia, “On-demand transparency for
improving hardware trojan detectability,” inHardware-Oriented Security
and Trust, 2008. HOST 2008. IEEE International Workshop on, 2008,
pp. 48–50.

[9] S. Dutt and L. Li, “Trust-Based design and check of FPGA circuits using
Two-Level randomized ECC structures,”ACM Trans. Reconfigurable
Technol. Syst., vol. 2, no. 1, pp. 1–36, 2009.

[10] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan
detection using IC fingerprinting,” inSecurity and Privacy, 2007. SP ’07.
IEEE Symposium on, 2007, pp. 296–310.

[11] R. Rad, J. Plusquellic, and M. Tehranipoor, “Sensitivity analysis to
hardware trojans using power supply transient signals,” inHardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE International
Workshop on, 2008, pp. 3–7.

[12] J. Li and J. Lach, “At-speed delay characterization forIC authentication
and trojan horse detection,” inHardware-Oriented Security and Trust,
2008. HOST 2008. IEEE International Workshop on, 2008, pp. 8–14.

[13] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in Hardware-Oriented Security and Trust, 2008. HOST
2008. IEEE International Workshop on, 2008, pp. 51–57.

[14] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,”in Hardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE International
Workshop on, 2008, pp. 15–19.

[15] M. Banga and M. Hsiao, “A region based approach for the identification
of hardware trojans,” inHardware-Oriented Security and Trust, 2008.
HOST 2008. IEEE International Workshop on, 2008, pp. 40–47.


