OS Support for Detecting Trojan Circuit Attacks

Gedare Bloom, Bhagirath Narahari, and Rahul Simha
Dept. of Computer Science,George Washington Universigshgton, DC 20052
E-mail: {gedare,narahari,simh@gwu.edu, Tel: (202) 994-7181, Fax: (202) 994-4875

Abstract—Rapid advances in integrated circuit (IC) develop- et al. suggest detection by observing the analog and digital

ment predicted by Moore's Law lead to increasingly complex, perturbations introduced by Trojan circuits.
hard to verify IC designs. Design insiders or adversaries em-

ployed at untrusted locations can insert malicious Trojan circuits Th in f f Ki defendi inst h
capable of launching attacks in hardware or supporting software- € main Tocus of our work Is on detending against suc

based attacks. In this paper, we provide a method for detecting HW/SW Trojans; specifically, we target the memory access
Trojan circuit denial-of-service attacks using a simple, verifiable mechanism with the privilege escalation attack. A secondar
hardware guard external to the complex CPU. The operating contribution is in detection of restricted denial-of-seev

system produces liveness checks, embedded in the software &loc (DoS) attacks. We assume a relatively simple Trojan circuit

to which the guard can respond. We also present a hovel method - -
for the OS to detect a hardware-software (HW/SW) Trojan that does not authenticate the malicious software. On oné,ha

privilege escalation attack by using OS-generated checks to testif the Trojan circuit knows when malicious software is rumgi
if the CPU hardware is enforcing memory protection (MP). then attacks could be much harder to detect. On the other hand
Our implementation of fine-grained periodic checking of MP sych a Trojan circuit would be more complex, and thus larger
enforcement incurs only 2.2% overhead using SPECint 2006. 5.4 arguably easier to detect using side-channel analysis.
| INTRODUCTION Current defense techniques for Trojan circuits primarily i
The economic strain of fabricating at ever smaller scalss haolve IC verification through testing and side-channel gsial
led to stratification of the semiconductor industry. IC desi \We propose to add another complementary layer of techniques
fabrication, verification, and integration are often coctéd to provide runtime detection for those Trojan circuits that
at different sites under different authority which incress slip past the chip verification and test phase. In partigular
risk by requiring multi-party trust. Because of these risksve assume a trusted operating system which we modify to
malicious parties can threaten the security of the IC desigreate two types of checks on the hardware. First, we create
and fabrication processes (the IC supply-chain). liveness checks in the form of randomized off-chip accesses
One security threat to the IC supply-chain is thmjan to a simple hardware module, calledyaard We assume the
circuit (also known as hidden malicious circuit and hardwarguard hardware is verifiable due to its simplicity, and we use
Trojan), a malicious insertion to or modification of an IGhis simpler, off-chip hardware to monitor behavior of aywer
that can occur any time between design and fabrication. Aomplex IC. Second, we add memory protection (MP) checks
attacker can use a Trojan circuit to carry out attacks whichs code executing in unprivileged mode that attempts tosacce
if undetected, may easily compromise the device relying gnmivileged memory areas. Liveness checks provide resttict
the subverted IC. Initial research in to Trojan circuitsised DoS detection, and MP checks detect the privilege escalatio
primarily on hardware-only attacks. Two particular Trojanattack discussed above.
enabled attacks, denial-of-service and (sensitive) métion
leakage, dominate the literature. DoS attacks appear te havChecks produced by the OS have an impact on the sys-
garnered the most attention [1]; however, King et al. [2km’s runtime performance. Liveness checks introduce min-
demonstrate more intricate attacks that involve maliceafs- imal overhead because they occur as part of the existing
ware interacting with the Trojan circuit. periodic interrupt used by commodity OSs to manage task
We use the terndW/SW Trojarfor situations involving the switching. However, executing checks may introduce a lot
collusion of malicious software with Trojan-infected hawte, of overhead depending on the mechanism and periodicity of
or where attackers as King et al. put it, “design hardwarhecking MP mechanisms — one of the goals in our research
to support attacks” [2] rather than hard-code the attack it to evaluate and to minimize such overhead. In order to
self in hardware. Two hardware mechanisms for HW/SWetermine how often MP enforcement must be verified, we
Trojans were presented by King et al.,, a memory accessimplemented the privilege escalation attack and foumad t
mechanism and a shadow mode mechanism. Leveraging thalicious software only needs MP mechanisms to be turned
memory access mechanism, they created malicious softwafefor about 15-20us on our system. To provide such fine-
that escalates its privilege to that of the superuser (roogjained checking, we use a real-time OS extension to Linux
Two software services were implemented using the shadewd we achieved 2.2% overhead averaged across SPECint
mode mechanism, one to insert a login backdoor and tB806. These results are shown in Section Ill. We next present
other to steal passwords. To defend against these attarig, Khe details of the OS-generated liveness and MP checks.

fffffff

3 C. Liveness Checks
Data> Main i) o
Guard For DoS detection we add liveness checks, a similar con-

Memory cept to the heartbeats from our prior work [3], but now
——————— implemented in the OS instead of as part of applications.
Fig. 1. System Architecture. A verifiable hardware modulea¢gy is added These I|venes§ checks are PseUdoranqor_n non-cached memory
to the memory hierarchy. The OS will use the guard to verify thetCPU accesses, which prevents simple prediction, delay, arldyrep

is trustworthy. attacks. A significantly delayed liveness check triggerssDo
detection. Note that by liveness we mean that the CPU is

store Sﬁ)re providing the OS with correct timing interrupts; we can dhec
ISt-e Proc. |—| for liveness because the guard can synchronize with the
load Osc. RAM load expected time interrupts of the CPU. This notion of liveness

02 | oa is overly simplistic (and ignores progress), and thus th& Do

detection is restricted.
Fig. 2. Hardware Guard Internals. The guard contains arlatsej storage . The_ OS generates th_e liveness CheCkS as Part of the regular
space, and processing logic. If an attack is detected, thedgean reset the timer-interrupt. In our implementation, the liveness dtsec
CPU (via the RST line) or can provide notification to an exékrntity. were added to thelo ti nmer function in Linux, which is
invoked every 1 ms to update the software clock and perform
various kernel bookkeeping tasldo_t i mer is architecture-
Il. OS CHECKS FORHARDWARE VERIFICATION independent, so our modification is fully portable and nenin
At a high level, our solution is conceptually simple. Awvasive. Before the number of expected ticks have elapsed sin
shown in Fig. 1, we add an off-chiguard, which is made of the last liveness check was sent, the OS sends a fresh check.
easily verifiable hardware, to implement light-weight dkeeof The overhead of liveness checking is minimal when aligned
the untrusted CPU. For detecting DoS, we introduce livenesith the existing periodic interrupt used by commodity OSs
checks that go off-chip to the guard at pseudorandom intervéo manage task switching.
by using the OS timer interrupt. To detect the privilege As each liveness check is received by the guard, the guard
escalation attack, we adopt real-time OS (RTOS) mechanisdetermines how many ms until the next check should arrive
for MP checks. By modifying the OS to be guard-aware, thHgy obtaining the next value in the pseudorandom sequence.
OS can check for HW/SW Trojan attacks. Computing this sequence is not time-critical, becauseastle
1 ms will elapse before the next liveness check might be
expected. Thus computing the next value in the sequence can
We make a few key assumptions in our research. Firgle complex without degrading performance or security.
the OS and guard are presumed to be trusted and verifiedAn obvious problem is in providing the OS with the ability
Second, the guard is assumed to have a precise notiont®generate the sequence without exposing the pseudorandom
timing, using an oscillator as shown in Fig. 2. Third, nonseed (or state) to the Trojan circuit. This problem is adyual
cacheable accesses to memory can be made by the OS, whiglhstance of a more general problem: How to hide a variable
is possible with most cache controllers and is exposed by m@®m a Trojan circuit. We do not yet have a complete solution
OSs, for example the ZONIPMA area of Linux. to this problem. By randomizing the location of the variable
Some limitations to the scope of our research are also woftlcan be hidden from simple Trojan circuits, but loading the
noting. First, we only attempt to protect against two pattc variable to a register may expose the value. Another pdisgibi
attacks, DoS and privilege escalation (through disabled. MR for the guard to instrument binary re-writing of the OS eod
Further, the DoS detection is restricted to verifying tha t that implements the liveness check, thus allowing the &@lue
OS is receiving timer interrupts. Second, we focus only a@ be inserted indirectly in the control flow. The problem
the CPU as being possibly malicious — peripherals are tlustef securing a variable from a Trojan circuit is an area that
requires further research. We suspect obfuscation tegbsiq
might increase the burden so that any Trojan circuit capable

The guard is a verifiable hardware module that is placed offf reverse-engineering the obfuscation will be detectddyle
chip and provides a verifier for the OS to test the CPU. Figide-channel analysis.

2 shows the internal components of the guard, including an]

oscillator for timing, scratch RAM for storing pseudorando D- Memory Protection (MP) Checks

values, and a simple processor. The guard observes memoriing et al.” privilege escalation attack is a straightfordia
accesses to detect OS-generated checks. A timer is manadd@d/SW Trojan attack. First, the Trojan circuit is somehow
by the processing logic and synchronized with the CPU'sitim&riggered by software to turn off memory protection (MP);
interrupts. When a check is received, a watchdog (countdowsithout MP, the memory space of the OS can be accessed
timer is set to a pseudorandom value. If the watchdog timbg any process. Next, malicious software accesses the OS'’s
out, the guard detects an attack and can reset the CPU oy nqgpifocess list, shown in Fig. 3 and searches for its own process
another entity (e.g. a human). control block (PCB).

A. Assumptions and Scope

B. Hardware Guard

Applications RT
Tasks

Linux Kernel

Fig. 3. Privilege Escalation Attack. Malicious software Ikg the list Xenomai Kernel
searching for its own process control block (PCB), then #e¢s effective
user ID (EUID) to the superuser, which is 0 for Linux.

Hardware

By changing the effective user ID (EUID) field of the PCB
to be the superuser, the SW Trojan elevates its privilege; tuFig. 4. Xenomai Extension to Linux. Xenomai conceptually kaye thin

: o :kernel under Linux that can provide real-time (RT) schedplif RT tasks.
ing MP back on closes the Vumerab"lty and makes detec“ﬁﬁreality, Xenomai extends the Linux kernel and is integiads part of the

harder. The following C-like code demonstrates the attack: os, which reduces potential performance overheads of swigh and out
of the Xenomai kernel functionality.
task = 0xc07093e0;

pid_of fset = 464;
eui d_offset = 676;

. . . . 0 5 10 15 20
[+ tell Trojan circuit to disable MP =/
di sabl e_prot(); Fig. 5. RT Task Scheduling in Xenomaig scale). The MP check is a RT
- task with a period of 1ps, shown in light blue. When the RT task is not
being executed, Xenomai invokes the regular Linux scheduféch executes

{j* Ei nd the PCB with ny_pid */ tasks as normal, shown in dark green.
0
task = next_task(task);

} while (*(task+pid_offset) != ny_pid); We created a RT task usingt _t ask_set_peri odi c

with period 15is. The RT task attempts to read memory in
/* privilege escalation */ the kernel address space — an MP check — and then sleeps by
*(task+euid offset) = 0; callingrt _task_wait_peri od. Fig. 5 shows the runtime
enabl e_prot (); behavior of scheduling this task (in light blue) and for the

o ._rest of the software stack, including Linux and applicasion
Here t ask is initialized to the head of the process list;

in Linux, this is the inittask symbol ir/ pr oc/ kal | syns. (in dark green).

Values forpi d_of f set andeui d_of f set are the offsets I11. EVALUATION

in the PCB of the process ID and the EUI@i.sabl e_pr ot Liveness checks in the regular OS clock provide detection

is how the SW Trojan requests the Trojan circuit to disablgf DoS with a few instructions in the timer interrupt. Memory

MP. The SW Trojan searches the process list until flndlng ﬂmotection (MP) ChECkS, in the form of user-space atten[pts t

PCB with a process ID matchingy _pi d, sets the EUID to access directly the kernel’s address space, provide dmrtaft

be O (root on Linux), then requests MP be enabled. a privilege escalation attack window. We measure the oeethe
We implemented the above code, and searching the lifitour solution on commodity hardware with SPECint 2006

takes about 15-2(under low load. Thus, one of our goalg5].

is to check at least every &S that MP protection is still We evaluated the performance of our system using Linux

on. Because Linux provides at most 1000 Hz frequency fahd Xenomai. All experiments were conducted on an Intel

scheduling, a full millisecond elapses between scheduliqmre-2 2.0 GHz with 2 GB RAM, running Linux version

events. Therefore, we chose to investigate real-time sgdimgd 2.6.25.11 in Fedora Core 7. We removed all non-essential

in Linux as a way to achieve fine-grained verification. modules from the Linux image, and we disabled power man-
We use a RT scheduler that can schedule tasks withagement functions. This was the baseline against which our

fixed period and duration. We chose the Xenomai Real-Timesults are normalized. For the liveness checks, we added in

Framework for Linux [4], which provides RT schedulingstructions to the software timer interrupt handfier_t i mer .

Fig. 4 shows how Xenomai fits in to the hardware-softwarfeor the RT extensions to Linux, we used Xenomai version

interface. Xenomai is implemented as a patch of Linux pli4.4 and we ran MP checking tasks pinned to each core.

a library to access the RT infrastructure. If there are no RT We ran all of the SPECint benchmarks three full runs (re-

tasks to schedule, Xenomai invokes the Linux scheduler. Rbrtable) and took the median of the three runs per benchmark

tasks have limited library support, restricted to code etgzb We also give an average across these medians. The SPEC

by Xenomai and a limited subset of the Linux kernel APlbenchmarks were compiled withQ2.

This limitation does not affect our solution, because the MP Fig. 6 shows the overhead for the Xenomai extension

check only requires a raw memory accesses. (RTOS) both with and without issuing MP checks. The results

B RTOS only £ MP Checks

periodic checks of memory protection mechanisms using a
RT extension to Linux. Using a RTOS for generating checks
provides an interesting platform for the OS to detect HW/SW
Trojan attacks. By timing how large of an attack window a
particular exploit requires, the OS can probe the hardware t
check for runtime vulnerabilities. Although our solutianjist

a patch for a known attacks, the defense technique we propose
is effective, efficient, and novel. Our results are encougg
with a low 2.2% average overhead for periodic checking of the
memory protection mechanisms and negligible overhead for
the DoS detection. These detection techniques are congatib

6.0%
5.0%
o
§4.0%
0,
a—>)3.0/o
o 2.0%
iy i nﬂ 1
0.0%
N O %9 x 5 O P Q5 xXx O
a8 c g EDLESEES
SN OESES 2F 5 o5 ¢
S 200 ER 58 c ®og
:rggq’-c_oo:;.:Emgm
o O v o 0 og o I
Q < S v odoTT
S <+ < = 9~ o]
S o <]
< © ©
< <

Fig. 6.

with existing Trojan circuit detection techniques.

ACKNOWLEDGMENT

Overhead of Real-Time OS Solution Compared to Unmodified This work is partially supported by NSF grants ITR-025207

Linux. By adding real-time scheduling capabilities to the, @fv-overhead and CNS-0934725, and AFOSR grant FA955006-1-0152.

software checks can be periodically scheduled for everp@&s. MP Checks
shows that using RTOS support for enforcement checking $n212% average
overhead compared to unmodified Linux.

(1]
show that Xenomai alone added 0.9% average overhead [tzc]>
the unmodified kernel, and that Xenomai with the MP checks
adds 2.2% overhead on average. The largest overhead for h{\lﬁ’
checks was 5.1% and the lowest was negligibly small.

Although we have focused on the privilege escalation attack
and MP checks, extending our solution to other privileged agy,
cesses is trivial. We implemented checks executing pgeie
instructions without having the highest current privildgeel
(CPL). These CPL checks are similar to MP checks: Sho¥?!
enough to have low overhead and verifiable by a hardwarg)
guard that is monitoring the instruction stream.

IV. RELATED WORK (7]

Two primary methods of detection are current research
trends in Trojan detection: logic-based testing [6]-[9]dan 8]
side-channel analysis [10]-[13]. Other literature in thedcfi
discusses alternate defense methods [3], [14], [15]

Our current and prior work [3], in contrast to most other[9]
techniques, focuses on detecting Trojan circuits in deggoy
devices. In other words, we provide another layer of defena%]
in case a Trojan circuit avoids detection. On-line detect®
by no means our contribution: others have discussed meagsuri
and reporting physical characteristics with on-chip sesisd!!l
[14]. Similarly, the time-tested replication of entire pessing
elements can help to detect some Trojan circuit attack[],
the overhead is likely to be unbearable for full state-maghi[12]
replication. Our approach is complementary to existing run
time techniques, and our research focuses on minimizing thej
overhead of runtime checks for Trojan circuits.

V. CONCLUSION [14]
The area of runtime detection of Trojan circuits is rife
with research opportunities. By adding liveness checks (i)
Linux, we are able to provide detection of some Trojan
circuit DoS attacks. We have also shown how to detect a
privilege escalation HW/SW Trojan attack through the use of

REFERENCES

S. Adee, “The hunt for the kill switch,Spectrum, IEEEvol. 45, no. 5,
pp. 34-39, 2008.

S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Yhat,
“Designing and implementing malicious hardware,” Pmoceedings of
the 1st Usenix Workshop on Large-Scale Exploits and Emefgerats
San Francisco, California: USENIX Association, 2008, pp8.1

G. Bloom, B. Narahari, R. Simha, and J. Zambreno, “Providiegure
execution environments with a last line of defense againgjarir
circuit attacks,” Computers & Security 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.cose.2009.03.002

P. Gerum, “Xenomai - implementng a RTOS emulation
framework on GNU/Linux,” 2004. [Online]. Available:
http://www.xenomai.org/documentation/branches/v2@iiikenomai.pdf
Standard Performance Evaluation Corporation, “SPEC Z®8."
[Online]. Available: http://www.spec.org/cpu2006/

S. Smith and J. Di, “Detecting malicious logic through stural
checking,” in Region 5 Technical Conference, 2007 IEE®O07, pp.
217-222.

F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakrghdfowards
trojan-free trusted ICs: problem analysis and detectiones®,” in
Proceedings of the conference on Design, automation anéht&sirope
Munich, Germany: ACM, 2008, pp. 1362-1365.

R. Chakraborty, S. Paul, and S. Bhunia, “On-demand traresy for
improving hardware trojan detectability,” lHardware-Oriented Security
and Trust, 2008. HOST 2008. IEEE International Workshop 2608,
pp. 48-50.

S. Dutt and L. Li, “Trust-Based design and check of FPGr&@its using
Two-Level randomized ECC structuresfCM Trans. Reconfigurable
Technol. Systvol. 2, no. 1, pp. 1-36, 2009.

D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and®inar, “Trojan
detection using IC fingerprinting,” iBecurity and Privacy, 2007. SP '07.
IEEE Symposium qr2007, pp. 296-310.

R. Rad, J. Plusquellic, and M. Tehranipoor, “Sendiivanalysis to
hardware trojans using power supply transient signalsHardware-
Oriented Security and Trust, 2008. HOST 2008. |IEEE Intéomat
Workshop on2008, pp. 3-7.

J. Li and J. Lach, “At-speed delay characterizationl@muthentication
and trojan horse detection,” iHardware-Oriented Security and Trust,
2008. HOST 2008. IEEE International Workshop @008, pp. 8-14.
Y. Jin and Y. Makris, “Hardware trojan detection usingtip delay
fingerprint,” in Hardware-Oriented Security and Trust, 2008. HOST
2008. |IEEE International Workshop p8008, pp. 51-57.

X. Wang, M. Tehranipoor, and J. Plusquellic, “Detegtimalicious
inclusions in secure hardware: Challenges and solutiomdfardware-
Oriented Security and Trust, 2008. HOST 2008. |EEE Inteéoma
Workshop on2008, pp. 15-19.

M. Banga and M. Hsiao, “A region based approach for thentiication
of hardware trojans,” irHardware-Oriented Security and Trust, 2008.
HOST 2008. IEEE International Workshop,d008, pp. 40-47.

