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a b s t r a c t

Integrated circuits (ICs) are often produced in foundries that lack effective security

controls. In these foundries, sophisticated attackers are able to insert malicious Trojan

circuits that are easily hidden in the large, complex circuitry that comprises modern ICs.

These so-called Trojan circuits are capable of launching attacks directly in hardware, or,

more deviously, can facilitate software attacks. Current defense against Trojan circuits

consists of statistical detection techniques to find such circuits before product deployment.

The fact that statistical detection can result in false negatives raises the obvious questions:

can attacks be detected post-deployment, and is secure execution nonetheless possible

using chips with undetected Trojan circuits? In this paper we present the Secure Heartbeat

And Dual-Encryption (SHADE) architecture, a compiler–hardware solution for detecting

and preventing a subset of Trojan circuit attacks in deployed systems. Two layers of

hardware encryption are combined with a heartbeat of off-chip accesses to provide

a secure execution environment using untrusted hardware. The SHADE system is designed

to complement pre-deployment detection techniques and to add a final, last-chance layer

of security.

ª 2009 Elsevier Ltd. All rights reserved.
1. Introduction One type of harmful compromise arises when a foundry
As the integrated circuit (IC) manufacturing industry pursues

ever smaller dimensions, the economics of the industry has

resulted in the separation of IC designers from the foundries

that manufacture the chips. Foundries that can fabricate high

quality, specialized ICs have become prohibitively expensive

to build and maintain. As a result, most foundries are located

offshore and contract services to multiple consumers.

Whether by competition between chip designers or between

nations, the relationship between designer and foundry can

become adversarial. This situation raises the possibility that

such foundries, which are not necessarily subject to tight

security, may be compromised.
(G. Bloom).
er Ltd. All rights reserved
exploits the sheer complexity of modern circuits to insert

a Trojan circuit (also called hidden circuit, malicious circuit) into

the IC. Such insertion is relatively straightforward because

a chip’s design is conveyed to a foundry in a well-understood

digital format that is routinely edited as part of normal foundry

procedures. It is easy for a single individual to subvert the

editing process and to insert a circuit that lingers for the

remainder of the fabrication process. The ease with which

Trojan circuits can be inserted has not gone unnoticed by those

who assess such risks. Some reports and articles already

describe and analyze such attacks and their consequences to

the semiconductor manufacturing industry (Adee, 2008;

Defense Science Board, 2005; King et al., 2008; US Senator, 2003).
.
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What attacks are possible with a Trojan circuit? Perhaps

the simplest attack is to effectively shut down a chip at an

opportune moment. Another type of attack is to leak sensitive

information. For example, in fully-encrypted execution plat-

forms, both data and code are encrypted in memory and

decrypted inside the processor; a Trojan circuit inside the

processor can bypass the encryption logic to write keys or any

data directly to memory thus compromising the very foun-

dation of security in such a system. Trojan circuits can also be

set up to scan for electromagnetic signals or software signals

(Adee, 2008) so that a processor can be shutdown when

provided the right external cue; for deployed embedded

systems, such an attack could be disastrous.

Our work focuses on two particular consequences of

a Trojan circuit attack:

� Information leakage. A simple leak of data can be used to

launch subsequent attacks or harvest confidential infor-

mation. Information leakage is also a means for reverse

engineering: the code for an important algorithm that is

otherwise encrypted can be leaked in its entirety.

� Denial-of-Service (DoS). A Trojan circuit can be activated at

some interval after deployment and can completely shut

down the IC, denying service to its device. Such an unex-

plained ‘‘malfunction’’ that occurs long after deployment is

advantageous to a competitor that colludes with the

foundry to engineer such an attack.

King et al. (2008) demonstrate Trojan circuits that enable

a variety of other attacks, however we currently limit the

scope of our work to protecting against information leakage

and DoS. This limitation allows us to provide a system that,

using both encryption and a heartbeat algorithm, can reduce

the impact that an inserted Trojan circuit might have on

a deployed IC. SHADE prevents information leakage to

memory locations, but the cost of dual-encryption is that

peripherals on the system bus no longer work properly.

Peripherals can be supported at the cost of no longer pre-

venting information leakage, by supplying a dual-decryption

module on the peripheral. An area for future research is in

supporting peripherals while preventing information leakage.

Currently, the few research efforts aimed at the Trojan

circuit problem all appear to focus on detecting such circuits

immediately after fabrication. Detection efforts use either

functional testing or the physical characteristics of circuits,

such as current or delay fingerprints (Agrawal et al., 2007; Li

and Lach, 2008; Wang et al., 2008). However, these approaches

are inherently statistical and have only been demonstrated on

small circuits. Thus, it is fair to say that we are very far from

being able to detect Trojan circuits reliably in large chips;

indeed, several research efforts addressing this problem are

underway (Adee, 2008).

Even if it was possible to detect Trojan circuits reliably, it is

expensive both to test chips in large enough samples for

statistical significance, and to produce ‘‘golden’’ (known

correct) chips against which the manufactured chips will be

tested. In contrast, we ask the question: if systems are to be

built with possibly Trojan-infected chips, to what extent can

we guarantee secure execution and attack detection at the

time the Trojan circuit activates?
We present the Secure Heartbeat And Dual-Encryption

(SHADE) architecture, a compiler–hardware system that

assumes untrusted ICs will be used and yet has the ability to

execute applications in secure mode by preventing and

detecting some types of Trojan circuit attacks. In particular,

SHADE detects information leakage and DoS attacks, and also

prevents attacks that attempt to write confidential informa-

tion out to memory.

In the SHADE system, memory accesses are doubly

encrypted in hardware, and the compiler back-end inserts

non-cacheable memory accesses to create a heartbeat that

is checked to detect a DoS attack. In SHADE’s current

implementation, to check the heartbeats one layer of the

dual-encryption must be deterministic so that the compiler

can generate heartbeat verification. Naturally, this dual-

encryption and heartbeat-checking incur an overhead – one

of the goals of this paper is to evaluate such overhead. Using

the SimpleScalar simulator (Austin et al., 2001), overheads are

shown to vary across a variety of benchmarks, sometimes as

low as 4.5% and, at other times, as high as 70%.

The hardware aspect of SHADE is implemented by adding

two additional logic modules to the system board to support

encryption and heartbeat verification. We also make a non-

collusion assumption that two different foundries are used for

the two modules. Then, a full decryption (for information

leakage) can occur only if both modules collude. We assume

the engineers and processes directly employed by the chip’s

designer and by the board’s developer are trusted, so that the

board is assembled at a trusted location under the control of

either the designer or developer.

Compilation tools and the compilation process need to be

instrumented to provide the encryption of code and static

data, and also to generate the heartbeats. Compilation is also

explicitly trusted and must be performed by a trusted

machine. Encryption is relatively simple to add, as it is per-

formed after the code is generated. The heartbeat generation

requires making additions in the compiler back-end, which

we discuss in more detail in Section 3. As currently conceived,

heartbeats use non-cacheable memory writes which may be

a design limitation for some systems.

The rest of this paper is organized as follows: Section 2

provides more background on the Trojan circuit problem and

related work; the SHADE architectural design is presented in

Section 3 and its performance and effectiveness are evaluated

in Section 4. Conclusions are drawn in Section 5, where we

also discuss possible future work.
2. Related work

Some of the earliest publications on the consequences of

semiconductor industry stratification include reports from US

Senator Lieberman (2003) and from Defense Science Board

(2005). The term Trojan circuit itself appears to have been first

used in military circles, and later by DARPA (Adee, 2008). A

more recent report from the semiconductor industry (Inno-

vation at Risk, 2008) alludes to this problem and the broader

implications of industry stratification, including theft of

intellectual property.
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The past few years have seen a flurry of research activity

aimed at demonstrating attacks or detecting circuits through

subjecting chips to certain kinds of physical tests. King et al.

(2008) demonstrate the ‘‘Illinois Malicious Processors’’, which

are capable of bootstrapping complex attacks based on two

Trojan circuits: one that provides shadow execution (cycle

stealing) and the other corrupts the memory controller.

Simpler forms of attacks have been shown by Agrawal et al.

(2007), who tested the effectiveness of their detection scheme

by implementing Trojan circuits using a 16-bit counter, an

8-bit sequential comparator, and a 3-bit combinational

comparator.

The current trend in defending against Trojan circuits is to

detect the added circuitry in a laboratory setting prior to

deploying the final product. Much of this work centers on the

idea of using physical measures, such as leakage current or

delays, to characterize chips. In most cases, such efforts

assume that the characteristics are known for ‘‘golden’’ chips

fabricated securely and assumed to be Trojan-free. Then,

a Trojan circuit leaves a physical fingerprint (additional

leakage current, for example) that can be detected in a chip

made by the suspect foundry.

Wang et al. (2008) identify three general approaches to

Trojan detection: failure-analysis hardware verification,

automatic test pattern generation (ATPG), and side-channel

analysis. Failure-analysis based techniques are identified as

increasingly less useful due to cost in resources and time. The

authors point out that although ATPG and other logic testing

based detection techniques can work well against malicious

alterations of circuitry, such techniques have difficulty in

detecting malicious additions. Side-channel analysis is iden-

tified as an effective method for detecting such added

circuitry. However, due to normal physical variations, side-

channel analysis is probabilistic for small fingerprints: the

smaller the added circuitry, the more its fingerprint will

appear to be normal noise. SHADE is designed for detecting

Trojan circuits that survive to full deployment and, as such, is

complementary and compatible with these pre-deployment

(‘time-zero’) detection schemes.

ATPG (or logic testing based detection) can be effective

when searching is directed toward areas of the chip that are

susceptible to Trojan insertion. Wolff et al. (2008) analyze the

Trojan circuit problem and describe some methods for

generating input triggers for Trojan circuits. Chakraborty et al.

(2008) present similar work in a design methodology intended

to produce conditions that are highly likely to trigger Trojan

circuit activation, with the added benefit of obfuscating the

original design.

Side-channel analysis techniques often rely on Physical

Unclonable Functions (PUFs) (Gassend et al., 2002), which

uniquely identify complex ICs by physical characteristics

and are used to produce fingerprints that rely on non-

functional attributes (side channels). These fingerprints are

used to determine challenge-response protocols that rely on

the physical characteristics of the IC to provide for

authentication. Agrawal et al. (2007), in their seminal paper

on this general approach, use power analysis in their

detection scheme and propose to investigate other side-

channel signals. Rad et al. (2008) extend power analysis to

multiple power port inputs across a chip, creating a more
scalable, distributed solution. Some other common PUFs

include temperature (heat dissipation) and delay character-

istics. Li and Lach (2008), for example, propose using both

delays measured across combinational circuits (gates) as

well as temperature variations.

Di and Smith (Di and Smith, 2007; Smith and Di, 2007)

consider the related problem of insider attacks on the design

side of the industry. In this case, a rogue employee of a design

company can insert a Trojan circuit into the design, either in

the high-level synthesis phase (into the netlist) or at the place-

and-route stage (into the geometry). Their approach attempts

to verify the integrity of design files by reverse engineering

and comparison to known structural units.

Another loosely related area consists of securing core

boundaries when multiple processing units are co-located on

a single chip. Research by Huffmire et al. (2007) describes

a simple isolation primitive (moat) that can be used to ensure

separation of cores after the place-and-route stage of chip

manufacturing. Moats can be used to isolate functionally

independent pieces of the design, which provide a framework

for designing secure systems out of untrusted components. To

then enable communication between the disparate cores,

a shared memory bus (drawbridge) is presented. Their work is

designed to prevent covert channels within a chip, and their

target architecture is FPGA (field programmable gate array)

technologies. Using the idea of moats and drawbridges

enables implementing SHADE on a single FPGA.

Our work, in contrast to existing techniques, is aimed at

detecting the actions of Trojan circuits that survive detection

through to deployment; as such it is complementary and

compatible with the variety of pre-deployment detection

schemes described above. Note that physical characteristics

can be used on-line by designing circuits that measure and

report these characteristics (Wang et al., 2008). Similarly the

age-old fault-tolerant technique of replicating entire pro-

cessing elements can help to detect some types of Trojan

circuit attacks (King et al., 2008). Our approach is comple-

mentary to these runtime techniques and can be used

simultaneously. Note that our approach is also suited to

vendors of board-level products, who may or may not believe

the security claims of chip vendors.

A recent trend in hardware security is the use of tamper-

proof technology and encryption to provide increased

software security. Some examples include special-purpose

hardware for cryptographic computations (Dandalis et al.,

2000; Grembowski et al., 2002), encrypted execution and data

(EED) platforms (Gelbart et al., 2005; Lie et al., 2000; Suh et al.,

2003), secure co-processors (Smith and Weingart, 1999; Smith,

1996; Tygar and Yee, 1993; White and Comfort, 1987; Yee and

Tygar, 1995), and hardware for security primitives and

authentication (Trusted Computing Group; Witchel et al.,

2002; Zambreno et al., 2005). When combined with appro-

priate tamper-proof technology, these techniques are also

useful for providing security versus physical attackers that

capture a device. While these solutions provide added secu-

rity, they are not designed to defend against Trojan circuits.

Although we do not explicitly consider physical attackers,

our system shares some similarities with EED platforms. In

EED platforms, memory is stored in encrypted form and only

decrypted within the processor (inner guard) boundaries. The
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goal of EED is to prevent physical attackers from gaining easy

access to application secrets through data or code manipula-

tion. In general, the CPU core is presumed to be tamper-

resistant, so that a physical attacker is relegated to activities

along the system bus, memory, and I/O devices. With respect

to application code the attacker can attempt control flow

attacks by replaying observed instruction memory fetches or

by injecting new instructions. For the application data, the

attacker can attempt data attacks such as data injection, data

substitution, and data replay. Code and data injection are

made more difficult by the encryption, but are still feasible;

the other attacks require additional security mechanisms. EED

platforms are designed to resist such attacks through the use

of memory freshness indicators, data integrity checks, and

control flow verification (Gelbart et al., 2005, 2008; Suh et al.,

2003). However, if the attacker has planted a Trojan circuit

within the CPU core then EED will provide little extra security:

the Trojan circuit can leak the platform’s encryption keys,

leading to compromised security. Combining EED with the

SHADE model may create a platform that is resilient to

physical attacks aided by Trojan circuits, which we currently

leave as future work.

Finally, we note that some concepts in SHADE were

initially outlined in prior work by some of the authors (Simha

et al., 2006), without much detail and without experimental

results. In this paper, we flesh out system details and evaluate

performance through a cycle-accurate simulation.

Fig. 1 – Two Guard Architecture. Note that the inner guard

can be part of the CPU, for example in an encrypted

execution and data (EED) platform, where all memory

accesses are encrypted and a cryptographic co-processor is

integrated with the CPU. Using programmable logic with

moats and drawbridges, the outer guard can also be

integrated with the CPU.
3. SHADE architecture

SHADE has two principal components – an architecture and

a specially instrumented compiler – and its security rests on

two core assumptions. The architecture itself consists of two

processing elements, an inner guard and an outer guard that are

set up to adversarially check each other for correctness and

responsiveness. As shown in Fig. 1, both guards sit in

sequence between the CPU and the system bus, able to check

all data moving in or out of the CPU. Both guards are loaded

with separate secret keys, the Inner-key and Outer-key respec-

tively. The trusted compiler is responsible both for preparing

applications by encrypting executables once with each key,

and for inserting the heartbeats that detect attacks; heart-

beats, which are periodic signals to indicate liveness, are

presented in Section 3.3. The compilation process is not

executed by the system that is instrumented with SHADE but

is instead part of assembling the board, which we discuss after

explaining the guards and the two core assumptions.

The two guards are just logic elements which can be built

from application-specific integrated circuits (ASICs), from re-

programmable logic such as FPGAs, or from some co-process-

ing components. For example, the guards can be built using

FPGAs (such as the Xilinx Virtex II Pro) with Moats and Draw-

bridges (Huffmire et al., 2007) to provide isolation. However,

other configurations are certainly feasible, and might provide

greater generality, extensibility, and performance. In our

experiments, we model the architecture design using separate

FPGAs for the two guards, which is simpler but less efficient

than some other designs.
Of the two core assumptions, the first is that even if chips

are fabricated at untrusted foundries, the resulting board is

built in a trusted location. The second is a non-collusion

assumption: the two guards are fabricated in different

foundries and any added Trojan circuitry in one does not

collude with the other. These assumptions are discussed and

justified below.

At a high-level, our approach would be used as follows.

System designers will incorporate our architectural modifi-

cations in designing a board, and will order the two guards

from different foundries to prevent collusion. Once the

potentially untrusted ICs arrive, the system (board) is con-

structed and a trusted compiler is used to generate dual-

encrypted executables for the board. Because the prevention

mechanism works at all times, the system can be deployed

with real applications, as long as those applications are

dually-encrypted by the trusted compiler.

The cornerstone of our approach is the manner in which

the execution flow is controlled: the CPU and inner guard are

shielded from the bus by the outer guard. All communications

into and out of the inner guard’s pins have to go through the

outer guard logic, which acts as a highly localized firewall to

ensure that a compromised IC only leaks useless information

or that an attack is detected rapidly. In a nutshell, information
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leakage is prevented because no single component knows

both the inner-key and outer-key, and denial-of-service is

detected because the compiler-instrumented code ensures

that heartbeat signals are regularly sent and expected by other

components. The remainder of this section describes the

details of our approach; but first we evaluate the reasonable-

ness of our assumptions.

The compiler instrumentation for information leakage

prevention is rather straightforward – once the Inner and

Outer-keys are known (and these can vary by individual

boards), all the compiler has to do is to encrypt the executable

as part of the last phase in compilation (after code optimiza-

tion) once with the Inner-key and once with the Outer-key.

There are some small details such as the appropriate block

size for encryption, but these will eventually be determined by

fine-tuning. The instrumentation needed for heartbeats

involves more compiler-level detail, as we will see, but once

optimized the compiler can be used henceforth for all

applications.

3.1. Assumptions

The effectiveness of SHADE, as mentioned earlier, relies on

two key assumptions: (1) compilation and board construction

are performed in a trusted location and (2) the two guards are

non-colluding.

The first assumption is reasonable because either both

board construction and compilation occur in a trusted loca-

tion (by the consumer), or board construction occurs in one

place and board designers delegate authority using a trusted

tool chain.

Now consider the second assumption of non-collusion.

Note that by non-collusion we mean that even though both

guards can have Trojan circuits, the Trojans in each cannot

cooperate at runtime through a protocol. Board designers

customarily use chips from multiple foundries already, for

example a CPU from one foundry, a memory chip from

another, and so on. Thus, it would not add much of a burden,

beyond maintaining physical compatibility, to obtain the two

guards from two different foundries.

Even in the case of using a single foundry, one or both

guards could be built out of reconfigurable logic and pro-

grammed post-fabrication. Collusion between the two guards

for the purpose of defeating the dual-encryption or heartbeats

requires a fair degree of sophistication and is all but impos-

sible to guess if the fabric is reconfigurable. Using the concept

of moats and drawbridges (Huffmire et al., 2007) also enables

instrumenting the system on a single reconfigurable chip,

where the CPU, inner guard, and outer guard each are isolated

by moats, and drawbridges are used to control access to off-

chip resources.

Key management is an interesting problem in its own right.

Note that the two keys can either be pre-loaded (already in the

design, and obfuscated) or, for more security, can be loaded

from ROM as part of the boot procedure. In the latter case,

using reconfigurable logic has an advantage: the keys and

cryptographic logic are all loaded post-foundry (i.e. in a trus-

ted location).

Assumptions made about the attacker’s capabilities are

also relevant. We consider two possibly distinct attackers
acting in concert: the first (A1) adds the Trojan circuit to the

hardware, and the second (A2) uses the Trojan circuit to

enable an attack. A1 is a sophisticated attacker that compro-

mises the untrusted foundry, either physically or by subvert-

ing the software chain used in the foundry. A2 will typically be

less sophisticated, but in some instances may possess

advanced equipment to launch successful attacks (e.g.,

knowing the trigger to cause information leakage).

Heartbeat detection becomes complicated in a general

time-sharing environment, where interrupts (and exceptions)

cause non-determinism which cannot be completely antici-

pated ahead of time. We have not yet solved this problem, but

we suggest that the operating system would need to be trusted

to store heartbeats with the state of each task during context

switching. This involves adding the operating system to the

trusted computing base, which is not necessary in the more

restricted scenario we examine in this paper.

3.2. Details of dual-encryption and leakage protection

There are many ways in which a Trojan circuit can leak

information. One of the most straightforward ways is to write

leaked information to memory, or to dump processor contents

onto the bus. In this manner, information is available to

accompanying software that is able to read the memory or to

external probes that can sniff the bus. If we can ensure that

everything written by the processor is encrypted, then any

leakage from a Trojan circuit will consist only of encrypted

information, presumed useless to an attacker. Even if the

encryption of the processor is subverted, the outer guard will

correctly encrypt the data and so the attacker is always left

with encrypted data.

The purpose of dual-encryption is to ensure that if a Trojan

circuit leaks information it is encrypted by the time it reaches

memory or even the bus. Note that a suitable (i.e. crypto-

graphically strong) cryptographic function must be chosen

that supports encrypting twice without degrading security;

such encryption is already routinely performed in practice by,

for example, onion routing techniques. The inner and outer

encryption need not be the same function, the choice of

cryptographic function is left to the implementer.

In the approach we propose, when the board is assembled,

the inner and outer guards are loaded with the Inner-key and

Outer-key respectively. Secure applications are encrypted by

the compiler using a trusted system; all code and data are

encrypted first with the Inner-key, then with the Outer-key.

Compilation may need to be replicated in case Inner- and

Outer-keys differ between assembled boards. The encrypted

binaries are placed in storage from which they will ultimately

be loaded by the CPU. Although the operating system is also

dual-encrypted, the BIOS can find the OS boot code in storage.

The hardware performs the decryption, so additional config-

uration is unnecessary to get the system booted. Fig. 2 shows

where we modify the compiler to support such encryption – at

the end of the compilation process.

Fig. 3 shows the process of how memory accesses are

encrypted (decrypted) on the write (read) path. During

execution, every memory access goes through the two guards.

On every memory load, the outer guard first decrypts with the

Outer-key then forwards the result to the inner guard, which
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decrypts with the Inner-key. Every store to memory follows

the reverse process: the inner guard first encrypts then

forwards the encrypted data to the outer guard, which

encrypts and completes the store.

Dual-encryption prevents information leakage attacks

from succeeding. On one hand, if the CPU or inner guard

attempts to leak anything, the outer guard will encrypt the

data and so the attack will fail. On the other hand, the outer

guard only ever receives data that are encrypted by the inner

guard; the outer guard could still leak some internal data (for

example, configuration variables, internal registers, or the

Outer-key), but using an FPGA frustrates the ability of a Trojan

circuit to predict where the internal data reside. Thus, each

guard could have Trojan circuits that leak, but to be successful

requires collusion between those circuits across both chips,

a scenario that is made highly unlikely by our requirement

that the chips are made by different foundries or are built out

of reconfigurable logic.

Note that although dual-encryption prevents information

from being leaked, it does not detect the moment such leakage

occurs. Thus, for example, an unencrypted write to memory

from the inner guard will merely result in improper values

(garbage) being written during a leak. To detect such an attack
Fig. 3 – Flow of dually-encrypted memory reads and writes

with Inner-key sk1 and Outer-key sk2. All of main memory

is encrypted (the trusted compiler encrypts static data and

code).
from the inner guard, one of many standard techniques from

network security can be adapted here if we were to treat the

two guards as two nodes in a network. For example,

communication between the two guards can be made to

include signed message digests. This approach of course

involves additional overhead beyond that already incurred by

the dual-encryption, but it is easily generalizable to commu-

nication between any pair of chips – such authenticated

communication could also be used for the writes from the

outer guard to memory, in which case the memory unit has to

be outfitted with logic for secure communication.

When the outer guard is reconfigurable and programmed

post-foundry, an attacker would find it difficult to create

a Trojan circuit that is capable of leaking anything other than

the configuration file. An alternative is for detection to be

performed in software, with an operating system module that

periodically checks memory for improperly encrypted data.

3.3. Details of heartbeats and DoS detection

Recall that one of the simplest actions a Trojan circuit can take

is to disable a chip, a denial-of-service (DoS) attack. In some

ways, a DoS scenario is diametrically opposite to that of

information leakage: there is no practical way to prevent it if

the Trojan circuit survives testing, but detecting the attack at

runtime is both possible and useful.

We introduce a heartbeat that enables the guards to check

each other (and the CPU) for continuing execution. The

heartbeat is created by the compiler, which inserts memory

writes to addresses located in a non-cacheable region (similar

to memory-mapped instructions). These memory stores are

used as signals to the outer guard, indicating a time range

until the next heartbeat. If a heartbeat is not sent within the

time range indicated by the previous heartbeat, then the outer

guard detects an attack.

In order to make the timing deterministic, a heartbeat is

added to every extended basic block (contiguous block of

instructions without a jump). The heartbeat indicates to the

outer guard the number of cycles of the current basic block.

When the next basic block executes, the outer guard will be

expecting the next heartbeat. For the outer guard to recognize

the heartbeats, the compiler prepares a heartbeat table which

associates the memory stores, encrypted with the inner-key,

with a range of cycles containing the delay until the next

heartbeat. As part of initial configuration, the outer guard is

either set up with the heartbeat table or with the ability to

fetch the table from memory. The outer guard checks every

memory write to the non-cacheable region against the

heartbeat table to see if the write is a heartbeat. This heartbeat

table is small, is stored only on the outer guard, and is checked

in parallel to the critical path of the memory fetching pipeline.

Each heartbeat sets a countdown timer to the duration indi-

cated by the table; if the timer reaches zero before the next

heartbeat, the outer guard raises a signal to indicate that an

attack has happened.

Note that these heartbeats require either that the inner

encryption provides the same encryption for each identical

memory write, such as in block cipher electronic codebook

(ECB) mode, or that the compiler knows the initialization

vectors and is able to predict the runtime value of encrypted
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heartbeats. Also, the heartbeat indicates an expected cycle

delay for the current basic block, but non-deterministic

factors (e.g. cache misses) make precise timing difficult. Thus

the heartbeat should either be the worst-case delay, a range

between best and worst-case, or be aware of runtime changes

that impact execution time.

Fig. 4 shows an illustrated, if contrived, example of some C

code, the compiler generated heartbeat table, and the runtime

behavior for that code. In this example we suppose that the

exit function does not produce a heartbeat.

Heartbeats are designed to detect DoS attacks; they also

provide some coincidental information leakage detection. If

the inner guard does not properly encrypt the heartbeat then

the outer guard will not observe the heartbeat and will detect

that an attack has occurred. Information leakage detection is

incomplete because an information leakage write could occur

between consecutive heartbeats. That is, the Trojan circuit

would have to be sophisticated or random enough that it turns

on encryption when the heartbeat occurs.

Although detecting transient leakages is not currently

solved, consistent leakages are detected. A possible approach

to improving leakage detection is to profile code for deter-

ministic memory writes and instruct the outer guard to watch

for them. However, the inner guard’s encryption will render

the deterministic writes unrecognizable unless the entire

cache block is deterministic. Also, due to caching, the outer

guard cannot reliably know when to expect the writes to

occur; thus the deterministic writes are not easily used as

heartbeats.

Our current heartbeat solution imposes a number of

limitations to the general applicability of the SHADE system.
Fig. 4 – Heartbeat example (IG [ inner guard, OG [ outer guard

if-branch consumes t1 cycles, and inside the for loop consume

cached memory access at the start of each basic block, encrypts

encrypted value with the number of cycles of the basic block in

block is used as a timeout to detect attacks. The CPU issues the n

inner guard encrypts (with the inner-key), and the outer guard

matched by the outer guard before the last timeout expires, then

example, we assume exit does not generate a heartbeat (i.e. it
Non-cacheable memory regions must be designated for the

heartbeats and must be known at compile time. Interrupts

and task switching require extending the operating system

to support managing and swapping the heartbeat tables as

part of the context switch. Because the outer guard needs to

match encrypted data coming from the inner guard against

the contents of the heartbeat table, the inner guard’s

encryption must be deterministic and computable by the

compiler. Finally, adding heartbeats to every extended basic

block introduces overhead, which we examine in the next

section.
4. Evaluation

The compiler-inserted heartbeats provide detection of

a variety of attacks, including information leakage, DoS, and

any attack that causes enough timing perturbation to delay

the heartbeats. Two layers of encryption protect against

successful information leakage. We measure the overhead

introduced by our scheme through cycle-accurate simulation

and a suite of benchmarks designed for embedded systems.

We also discuss SHADE’s effectiveness at preventing or

detecting attacks identified in Section 1.

4.1. Performance overhead

We simulated SHADE using SimpleScalar (Austin et al., 2001)

and the gcc cross-compiler for the ARM processor. Recall that

we model the two guards as distinct FPGAs, a less efficient but

simpler design choice for implementing the SHADE
). For this simple code, the basic block inside the taken

s t2 cycles on each iteration. The compiler inserts a non-

the memory access with the inner-key, and then stores the

to the heartbeat table. The number of cycles of the basic

on-cached memory writes when the basic blocks begin, the

observes a match in the heartbeat table. If no heartbeat is

an alarm is raised to indicate a failure has occurred. In this

simulates a DoS attack).



Fig. 5 – SHADE overhead.
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architecture. We modified the sim-outorder simulator to add

FPGA modules for the guards, and the compiler was modified

to add the heartbeats. The processor was chosen to represent

a typical embedded system: a 400 MHz processor with two

200 MHz FPGAs (for the guards), an external bus and memory

running at 100 MHz, and one level of instruction and data

caches, each 32 KB in size, 32-way associative, with 32-byte

cache lines. We evaluated the system’s performance using the

MiBench (Guthaus et al., 2001) and Data Intensive Systems

(DIS) (Data Intensive Systems Benchmark Suite) benchmarks

for embedded processors.

For encryption, we used an AES implementation in Elec-

tronic Codebook (ECB) mode. Although ECB introduces the

possibility of replay attacks, the point of dual-encryption is to

protect sensitive data from leaving the system. One possible

weakness is that the inner guard could replay heartbeats, if it

can find out the heartbeat timing. Although such an attack is

difficult, it is possible; however, the inner guard receives

unencrypted memory requests, so the choice of encryption

algorithm does not help or hinder that situation. External
Fig. 6 – Cache miss rates and frequency of heartbeats (basic blo

Higher cache miss rates increase overhead caused by encryptio

instruction count increases the overhead caused by heartbeats.
attackers can only replay memory accesses that are observed,

but are unable to discern the encrypted data. Patterns of traffic

are vulnerable to analysis, but ECB mode is sufficiently secure

for the purposes of Trojan circuit detection. More secure

encryption schemes can be used if further guarantees are

needed, and even a hybrid approach might be sufficient (for

example use ECB at the inner guard and AES CBC at the outer

guard).

Fig. 5 shows the overhead of both heartbeats and encryp-

tion, compared against the standard sim-outorder simulator

with unmodified gcc. The average overhead is 15.3% for the

heartbeats and 11.4% for the encryption, for a combined

(average) overhead of 26.7%. The combined overhead

minimum and maximum are 4.5% and 69.9% respectively.

Execution performance is impacted by both the added

overhead for encrypting and the extra instructions for heart-

beats. Encryption occurs along the memory path and thus, not

unexpectedly, the benchmarks with larger cache miss rates

exhibit larger encryption overhead. Fig. 6 shows the cache miss

rates of the benchmarks without the added heartbeats, which

would change instruction cache miss rates. Note that although

cache miss rate tells part of the story, the delay between cache

misses is also important: a full pipeline of memory accesses

and decryptions hides some of the overhead.

Heartbeats expand the code size, so benchmarks that tend

to execute smaller basic blocks have more frequent heartbeats

and therefore greater overhead. Fig. 6 shows the frequency of

heartbeats for the benchmark applications, based on profiled

execution. As expected, the overhead introduced by heart-

beats is directly proportional to the frequency of heartbeat

execution. The average number of heartbeats per 100

instructions is 8.5.

4.2. Security evaluation

To detect information leakage attacks, the outer guard

implicitly verifies that the heartbeats are properly encrypted

(if they are not, the outer guard will not make a match in the

heartbeat table). DoS and attacks that substantially delay

normal program execution are detected trivially due to

delayed or missing heartbeats.
cks) per 100 instructions for the unmodified benchmarks.

n, and greater frequency of heartbeats with respect to
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There is no mechanism to detect if the outer guard leaks

information (internal configuration, outer-key, etc). However,

by our assumption that the two guards do not collude, and the

relative simplicity of the outer guard, such an information

leak is less critical to the security of our system. A simple fix to

this concern is to add more guards (more redundant checks),

but this also will increase the memory path latency.

SHADE is unable to prevent most attacks from occurring,

but is designed to detect anomalous behavior indicating an

attack has happened. Attacks are detected by missing or cor-

rupted heartbeats. Thus, the time between an attack and its

detection relies on the distance between heartbeats, which is

the basic block length. With the benchmark applications used

for testing performance overhead, the basic block length

ranges between 2 and 842 instructions (including the two

instructions used for simulating the heartbeats), with an

overall average of approximately 11 instructions per basic

block. At runtime, the number of instructions executed

between heartbeats averages between 5.3 and 44.5, with an

overall average of 17 instructions between heartbeats.
5. Conclusion and future work

In this paper we presented the SHADE architecture for

detecting and preventing Trojan circuit attacks in deployed

ICs fabricated at untrusted foundries. Our goal was to provide

an approach to address attacks launched by Trojan circuits

during deployment. Our approach has several advantages. As

a leakage prevention technique it is as effective as the

cryptographic strength of keys used and, therefore, very

secure. In addition, when the additional hardware we use is

reconfigurable, the encryption keys are loaded post-foundry

as part of a larger circuit in a trusted location. In terms of

detection, our approach is non-destructive and compatible

with all pre-deployment approaches that are situated across

the design spectrum from system specification through

packaging.

Our performance study indicates that heartbeats represent

a fairly substantial overhead, and so in the future, we aim to

investigate compiler optimization techniques to reduce this

overhead. Some other areas to improve performance include

memory pre-fetching by the outer guard and integrating the

inner guard with the CPU. If the inner guard is in the CPU, then

its encryption can be more efficient, which will be most

helpful if the outer guard can offset its own encryption over-

head by pre-fetching memory blocks for decryption. An added

benefit to placing the inner guard in the CPU is the possibility

of using the inner guard as the cryptographic co-processor

when integrating SHADE with Encrypted Execution and Data

(EED) platforms (Gelbart et al., 2005; Lie et al., 2000), where

instructions and data are encrypted in memory.

An interesting challenge not solved by SHADE is if the

Trojan circuit causes a subtle change to disrupt software

correctness that does not impact the CPU timing mechanism.

For example, a Trojan circuit might be designed to disable the

carry-bit of an adder given some rare environment (such as

specific register contents being equal to a given account

number). Assuming that the result is not being used to encrypt

the heartbeat, SHADE will not detect such an attack because
there is no noticeable change to the CPU timing. Defending

against such attacks is an area for future research.

The scope of information leakage protection provided by

SHADE is currently limited to attacks against the memory data

flow. The current SHADE system breaks memory-mapped IO

and DMA transfers from memory to device. Similarly, transfers

to memory will not be dual-encrypted and therefore will not be

properly read by the CPU. SHADE is sufficient for disabling

information leakage attacks against non-networked devices,

but supporting networked devices (and more generally any

device with an external peripheral, such as a serial port) provide

a much greater challenge, another area for future research.
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