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ABSTRACT

Hardware support can reduce the time spent operating on data struc-
tures by exploiting circuit-level parallelism. Such hardware data
structures (HWDSs) can reduce the latency and jitter of data struc-
ture operations, which can benefit real-time systems by reducing
worst-case execution times (WCETs). For example, a hardware
priority queue (HWPQ) can enqueue and dequeue prioritized items
in constant time with low variance; the best software implementa-
tions are in logarithmic-time asymptotic complexity for at least one
of the enqueue or dequeue operations. The main problems with
HWDSs are the limited size of hardware and the complexity of
sharing it. In this paper we show that software support can help cir-
cumvent the size and sharing limitations of hardware so that appli-
cations can benefit from a HWDS. We evaluate our work by show-
ing how the choice of software or hardware affects schedulability
of task sets that use multiple priority queues of varying sizes. We
model task behavior on two applications that are important in real-
time and embedded domains: the grey-weighted distance transform
for topology mapping and Dijkstra’s algorithm for GPS navigation.
Our results indicate that HWDSs can reduce the WCET of applica-
tions even when a HWDS is shared by multiple data structures or
when data structure sizes exceed HWDS size constraints.

Categories and Subject Descriptors

D.4.7 [Operating Systems]: Real-time systems and embedded sys-
tems; B.3.3 [Memory Structures]: Worst-case analysis; E.1 [Data
Structures]
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1. INTRODUCTION
Throughout the history of computing there has been a perfor-

mance gap between CPUs and main memory. Wilkes [28] points
out that memory started out different from and underperforming
processing, and the performance gap persisted despite the use of
semiconductors for both since the 1970s. Indeed, the performance
gap has steadily increased since the 1980s, leading Wulf and Mc-
Kee [30] to coin the term memory wall to describe the bottleneck
caused by the gap. The memory wall arises from processor perfor-
mance improving faster than memory bandwidth and latency.

A common technique to delay the impact of the memory wall is
caching. Unfortunately data caches are difficult to model in hard
real-time systems; in particular obtaining an accurate worst-case
execution time (WCET) is hard [8]. One well-known approach
to dealing with the data cache is to attempt to partition it among
the system’s tasks [24]. However data sharing and RTOS services
can make cache partitioning problematic and workarounds lead to
locking or other strategies that frustrate real-time analysis. (The in-
struction cache is easier to handle and well-known techniques can
accommodate it in a WCET analysis [20].)

Another common approach to reducing the effect of memory
latency is to reduce the complexity and operating frequency of
processing cores while maintaining high throughput by replicat-
ing multiple cores on one chip: the chip multiprocessor or multi-
core. Multicore platforms have become common due to the con-
tinued growth of chip space predicted by Moore’s law. For real-
time systems, problems with using multicore platforms include the
difficulties of parallelizing applications, managing shared caches,
partitioning tasks across cores, and synchronizing shared resources
among cores; these problems drive up the complexity (and there-
fore cost) to develop real-time systems using multicore platforms.
We suggest an alternative approach for using the spare chip space.

In this paper we introduce hardware data structures (HWDSs) as
an approach for hard real-time systems to improve the predictabil-
ity of memory accesses. HWDSs represent an alternate use of
chip space compared to replicating processing cores. The devo-
tion of chip space to HWDSs is a promising direction for time-
predictability in hard real-time systems. The contributions of this
work include: fitting HWDSs into traditional response time analy-



sis by identifying variables that affect WCET when using a HWDS;
deriving two novel assignment algorithms for choosing which tasks
should use a HWDS as opposed to a software DS; exploring the pa-
rameter space of the variables that affect HWDS WCET in order to
quantify the effectiveness of those algorithms; and demonstrating
how real-world applications can benefit from this work.

The advantage that HWDS have over alternatives such as scratch-
pad memory is that a HWDS exploits hardware parallelism to re-
duce the algorithmic complexity of data structure operations while
also improving memory access predictability. The primary disad-
vantage for HWDSs is that chip designers need to devote a fixed
size of hardware resources for the benefit of DS operations, and
the limited size causes problems both for sharing the hardware and
for using the HWDS when DS size exceeds HWDS capacity. We
circumvent hardware size constraints by using exceptions triggered
in hardware and handled in software; amortizing exception costs
across multiple non-excepting operations puts bounds on the cost
of HWDS operations for schedulability analysis. For sharing a
HWDS we present two simple algorithms and two novel algorithms
that determine which tasks and data structures can use HWDS re-
sources subject to task, data structure, and HWDS parameters.

2. HARDWARE DATA STRUCTURES
A hardware data structure (HWDS) is an implementation of a

data structure with hardware mechanisms to improve the perfor-
mance and asymptotic complexity of data structure operations. A
HWDS organizes the memory hierarchy in terms of data structure
operations instead of cache line fetches. By avoiding the cache a
HWDS has the potential to deliver consistent, predictable timing.

So far most work on HWDSs has ignored the interface between
the HWDS and programmer, with existing HWDSs having limited
interactions with operating system (OS) and application software.
This paper shows how such interactions are crucial to realize effi-
cient HWDSs. In particular, we investigate HWDSs from a holistic
view that incorporates processor architecture, OS, and applications.
OS support extends the capabilities of HWDSs beyond prior art
with support for large data structures and sharing a HWDS.

2.1 Priority queue: an example HWDS
A priority queue (PQ) is a data structure with enqueue (insert),

dequeue (delete-min), and peek (read first) operations. Dequeue re-
moves and returns the highest priority node in the queue; peek is
similar to dequeue, but without removing the node. Applications
of PQs include graph problems like finding the minimum spanning
tree or shortest path, discrete event simulation [9], network rout-
ing [19], OS scheduling [5], and image analysis [16].

Although many software implementations of PQs exist, the im-
plicit binary heap remains one of the best due to its simplicity, loga-
rithmic worst-case time complexity, and low memory overhead [15,
16]; these points especially are valid in real-time systems [18]. In
this paper we consider only the implicit binary heap as a represen-
tative software-implemented PQ.

A hardware priority queue (HWPQ) is a hardware implementa-
tion of the PQ data structure. An example of a HWPQ is the shift
register PQ, which is shown in Figure 1. The shift register PQ is an
array of priority and data payload tuples that the hardware sorts by
priority value. A shift register block encapsulates each tuple, and
each block connects to its two neighbors. Global lines connect all
the blocks to the input and control. Global broadcast lines limit the
scalability of the shift register PQ, but each block makes a decision
locally based on inputs from its neighbors and the single global in-
put so the design is simple. The latency of this HWPQ primarily
comes from the wire delays of the global signals, especially for a

Figure 1: A shift-register based hardware priority queue of

priority-payload tuples in a double-linked hardware list.

large number of blocks [19]. Fanout of the comparators is also a
concern if there is a wide range of priority values. Other HWPQ
implementations eliminate the global lines—see Moon et al. [19].
The choice of HWPQ implementation makes a difference in terms
of hardware size, power cost, scalability, and maximum operating
frequency, but we defer the reasoning behind such choice.

Both adding and removing nodes with the shift register HWPQ
are efficient because priority comparisons occur in parallel and ev-
ery block determines its action upon receiving global signals. The
insert operation broadcasts a new tuple to all blocks. Each block
sends its current tuple to the left and compares its current priority
value, new priority, and priority from the right. If the new prior-
ity is less than the current priority, then the block keeps its current
data. If the new priority is between the current priority and the pri-
ority from the right, then the block latches the tuple. Otherwise, the
block latches the right neighbor’s tuple. Removing the highest pri-
ority node is simple, with each block sending its tuple to the right
and latching from the left.

HWPQs motivate the HWDS approach. Enqueue and dequeue
happen in constant time: the fastest software implementations take
logarithmic time for at least some operations. Unfortunately the
size constraints and lack of support for sharing the HWPQ among
multiple PQs present problems for general-purpose application use
of a HWPQ. To address these problems we introduce novel mech-
anisms for spilling and filling data between the HWPQ and main
memory. We start with the established work on fixed-size unshared
HWPQs and evolve a new approach that combines reasonable hard-
ware and OS modifications to support application use of a HWPQ.

2.2 Spilling and Filling
Applications require support for PQs of arbitrary size. Since

hardware has a fixed capacity, arbitrarily large data sets eventually
will cause overflow. In addition, chip space allocated to the HWPQ
steals from other features such as cache, so minimizing the HWPQ
size is important.

We solve the problem of arbitrarily large PQs using an exception-
based approach for handling overflow inspired by work in fine-
grained threading [14, 23]. HWPQ control logic and software ser-
vices handle overflow by spilling HWPQ data to secondary storage
(memory). A HWPQ generates an overflow exception when the
number of nodes it contains meets some threshold; the maximum
threshold is the size of the HWPQ. Similarly, the hardware raises
an exception when there exist spilled nodes and either the HWPQ
holds less than some threshold of nodes or the highest priority node
in the HWPQ has lower priority than some spilled node.

The ordering of nodes in the HWPQ has meaning—based on
the interpretation of priority—so the overflow exception handler
removes low-priority nodes from the HWPQ. As the exception han-
dler removes nodes the HWPQ marks the lowest priority node re-
maining in the HWPQ with an invalid bit. The hardware will mark



invalid any node that the application subsequently enqueues with a
lower priority than an existing invalid node. When the head of the
HWPQ is invalid the HWPQ raises an underflow exception because
a higher priority node might exist among the spilled nodes. The un-
derflow exception handler fills the HWPQ, which mark nodes valid
if they have higher priority than those the exception handler fills
from the spilled nodes. During an underflow exception the handler
may also need to spill nodes because of invalid nodes.

The choice of algorithm for storing the spilled nodes will affect
the time required by both the overflow and underflow exception
handlers. Because the HWPQ nodes are already sorted we chose
to maintain a sorted linked list for the spilled nodes. The over-
flow handler merge sorts the spilled nodes into the linked list, and
the underflow handler fills from the head of the linked list. Other
software PQs would likely show advantages for certain PQ sizes,
HWPQ sizes, priority value distributions, and PQ access patterns.

For real-time systems the execution time and rate of overflow and
underflow exceptions is important because those two parameters
affect a task’s WCET when using a HWPQ. Exception handler ex-
ecution time depends on the size of the PQ and the number of nodes
spilled (equivalently filled). The rate of exceptions depends on two
factors: the rate of PQ operations and the number of nodes spilled.
The PQ size and rate of operations are application-dependent, but
if they are bounded then the exception WCET and rate depends on
the amount of work done—the number of nodes spilled.

Tuning the number of nodes spilled to be any number k less than
or equal to half of the HWPQ size limits the number of exceptions
to at most one overflow and one underflow per k PQ operations. If
the handler spills 4 nodes then there could be two exceptions for ev-
ery 4 PQ operations; spilling 8 nodes allows 8 PQ operations with
at most two exceptions, and so on. In any window of k PQ opera-
tions the worst case is that the entire HWPQ is full of invalid nodes
and the HWPQ reads the head node and then enqueues a node. The
read induces an underflow exception since the head is invalid. The
underflow handler fills the HWPQ with k valid nodes and spills
at least k nodes, leaving the HWPQ in a state with at least k valid
nodes and possibly invalid nodes filling the rest of the HWPQ. (The
HWPQ can then satisfy at least k operations without another under-
flow.) The subsequent enqueue may cause an overflow exception
which will spill k nodes. At this point the HWPQ can satisfy at least
k operations without another exception. We minimize the number
of exceptions that get taken by tuning the handlers to spill half of
the PQ size because each exception that gets taken adds extra fixed
processing overhead to invoke the handler.

Spilling HWPQ data causes a problem for operations that target
spilled nodes: software must implement the operation on the nodes
in the spill area. Peek, enqueue, and dequeue operations work fine,
but some applications violate the priority abstraction to access PQ
nodes at random; for example Dijkstra’s algorithm benefits from a
change-key operation that can change the priority of an enqueued
item, or task schedulers may need to delete a task from the PQ when
the task suspends or is killed. Currently we ignore these cases, but
we could solve them by introducing an exception to emulate the op-
eration in software; assuming these exceptions are rare or bounded
we can analyze them similarly to the overflow and underflow ex-
ceptions. For Dijkstra’s algorithm change-key can be ignored at
the cost of extra storage and processing when dequeueing [7].

2.3 Sharing
Sharing is a traditional OS problem of managing contention for

a limited hardware resource. We implement an offline assignment
algorithm that decides which task’s PQs are allocated the HWPQ.
At runtime a HWPQ context switch swaps one PQ for another.

Sharing the HWPQ adds a little more complexity to both hard-
ware and software support. The main addition is that the HW needs
to distinguish PQs, so the PQ operations must identify which PQ
to use; in prior work there was a one-to-one mapping between PQ
and HWPQ. Loosening that mapping to many-to-one introduces
the problem that the HWPQ must have some way to separate or
distinguish data belonging to different PQs. As with other facets of
HWPQ design many possible solutions exist for this problem. Our
solution is to add an identifier to every instruction that accesses
the HWPQ and for the HWPQ to track which PQ currently is us-
ing the HWPQ based on the identifier. The exception handlers use
the identifiers to store the spilled nodes for each PQ in a separate
data structure. We chose this approach because the hardware cost
is small (an extra register and some comparators) while supporting
a wide range of policies for how PQs share the HWPQ. The main
drawback is that each software PQ must have a unique identifier.

The HWPQ context switch involves spilling all of the nodes for
the currently loaded PQ and filling nodes for the PQ the applica-
tion is accessing. To simplify WCET analysis our HWPQ context
switch handler tracks how many nodes it spills from the HWPQ
while emptying and refills that PQ so that the same number of
nodes are present in the HWPQ before and after a PQ is context
switched. We also restrict each task to use at most one PQ; when
a task uses more than one PQ only one should use the HWPQ oth-
erwise the number of HWPQ context switches may be large. With
our restriction the HWPQ context switch aligns with the task con-
text switch, which is important when analyzing a task’s WCET. The
worst case cost of a HWPQ context switch is when the HWPQ is
full and the handler is refilling from a PQ that had a full HWPQ pre-
viously; then the context switch spills and fills the entire HWPQ.
Similar to spilling and filling the cost of a HWPQ context switch
depends on PQ size and spill data structure implementation.

3. RESPONSE TIME ANALYSIS
A hardware data structure (HWDS) affects task response time

by decreasing WCET due to reducing DS operation times, but ex-
ceptions caused by overflow/underflow conditions increase WCET.
Sharing the HWDS among tasks also increases the response time.
In the following we evolve a standard response time analysis [3] to
include variables that affect WCET when using a HWDS. We only
consider periodic tasks.

We adopt the notation

• τ : the set of all tasks

• Ti: the i’th task

• pi: period of Ti

• ei: the worst-case execution time (WCET) of Ti.

• ci: the maximum context switch latency of Ti

Usually ci is equal for all tasks and is included twice in ei: once
for the task preempted by Ti and once for resuming that task.

The response time Ri of Ti is the minimum value of t satisfying

t = ei +

i−1
X

k=1

‰

t

pk

ı

ek. (1)

Equation 1 considers the WCET of Ti plus the sum of processor
time of higher priority tasks overlapping with the time interval t.
We find Ri by solving the recurrence

t(l+1) = ei +

i−1
X

k=1

‰

t(l)

pk

ı

ek



starting with t(0) = ei. τ is schedulable if Ri < pi for all Ti ∈ τ .
Adding HWDSs splits the periodic tasks into two sets

• bτ : the set of tasks using a HWDS

• eτ : the set of tasks not using a HWDS

so τ = bτ ∪ eτ . HWDS assignment is the problem of choosing
whether to place Ti in bτ or in eτ for every i.

Task response times depend on HWDS assignment. Each task’s
WCET is now

ei =

(

bei + bxi + bci + max
j>i

bcj if Ti ∈ bτ

eei otherwise

where

• bei is the WCET of Ti when the HWDS replaces DS opera-
tions

• bxi is the cost of exceptions taken due to using a HWDS

• bci is the maximum cost to context switch the HWDS for Ti

• eei is the WCET of Ti using a software-only DS

bxi depends primarily on how many DS operations can cause excep-
tions during pi (i.e. during any job of Ti) and the time needed to
handle the exceptions: because bxi depends on the HWDS imple-
mentation no generic formula exists for ei.

bei depends on bcj for j > i, that is the maximum time needed
to empty and fill the HWDS of a lower priority task. Preempting
a lower priority task j empties j’s HWDS and fills i’s, whereas
resuming j empties i’s HWDS and fills j’s.

Equation 1 still gives Ri but now ei depends on whether Ti ∈ bτ
or not; that is, on the assignment algorithm. Assignment for just
one task depends on whether

eei > bei + bxi.

Assuming that bxi is bounded then finding the Ti that maximizes

eei − (bei + bxi)

gives the task that will benefit most from using the HWDS.
Including multiple tasks that share the HWDS complicates the

assignment problem. In particular bci varies depending on the cost
of emptying and filling the HWDS (i.e. a context switch), so—
unlike with traditional response time analysis—a low priority task
can affect the response time of higher priority tasks. Conversely
higher priority tasks already affect the response time of lower pri-
ority tasks. So putting any Ti into bτ necessitates checking whether
it negatively affects the rest of the tasks already in bτ in order to find
an optimal assignment (see Section 4).

3.1 Hardware Priority Queues
When using a hardware priority queue (HWPQ) as a HWDS the

costs of bxi and bci are upper-bounded as follows.

Let bS be the size of the HWPQ. Tuning the number of nodes
that the overflow (underflow) exception handler spills (fills) to be

w < bS/2 guarantees that at most one overflow (underflow) ex-
ception will occur for every w priority queue operations (enqueues
or dequeues). Let Oi be the maximum number of PQ operations
that can occur for any job of Ti, and let A(w) be the WCET of the
overflow (underflow) algorithm to handle w nodes. Then

bxi < A(w) ∗ ⌈Oi/w⌉. (2)

When the context switch invokes the overflow routines to empty
the HWPQ and the underflow routines to fill the HWPQ then the

bound on bci depends on how much of the HWPQ Ti uses. Let

bsi <= bS be the maximum usage of the HWPQ by Ti. Then

bci < A(bsi) ∗ bsi. (3)

For example if Ni is the maximum size of the priority queue
(i.e. maximum number of overflow nodes) then a binary heap im-
plementation of the overflow nodes will have A(w) ≈ w ∗ log2 Ni

(approximating the WCET of the heap by its asymptotic behavior).
Then bxi and bci come directly from Equations 2 and 3 respectively.
In Section 5 we measure software and hardware implementations
of priority queues for the WCET of their enqueue and dequeue op-
erations and—for HWPQs—context switch, spill, and fill. We eval-
uate HWDS assignment algorithms with those measurements.

4. HWDS ASSIGNMENT
Assigning the HWDS attempts to assign tasks to use either a

HWDS or a software DS. We use terminology from scheduling—
indeed the assignment problem is similar to the problem of task
scheduling. An assignment is feasible if a solution to Equation 1
can be found for every task (equivalent to finding a feasible sched-
ule). If an assignment algorithm exists that produces a feasible as-
signment for a set of tasks then we say those tasks are schedulable.
An assignment algorithm is optimal if it always produces a feasible
assignment for a set of tasks when one exists.

We evaluate four assignment algorithms for HWDSs: software-
only assignment (SOA), hardware-only assignment (HOA), priority-
aware assignment (PAA), and context switch cost-aware assign-
ment (CSCAA). The first two algorithms are naïve and represent
two extremes, and the latter two are greedy algorithms employing
different heuristics to make choices about when to use a HWDS.
None of these algorithms is optimal, and the PAA and CSCAA al-
gorithms do not permit tasks to change their priorities.

Some aspects of these algorithms are dependent on DS behavior
in particular on the WCET of DS operations, HWDS exceptions,
and the HWDS context switch time. We established in Section 3.1
that a HWPQ has a bounded WCET if the maximum DS size, max-
imum number of DS operations per period, and the HWPQ size are
bounded. In general these algorithms will work for any HWDS that
has bounded WCET based on the DS size and DS operations. If a
HWDS requires more information to bound its WCET then new
algorithms may be required.

The SOA algorithm simply assigns every task to use a software-
implemented DS: the SOA algorithm ignores the HWDS. The HOA
algorithm assigns every task to use the largest possible HWDS.
Usually the largest available HWDS gives the best performance out
of all the available HWDS sizes, but not always. As the usage of the
HWDS increases the rate of exceptions should go down assuming
that the work done during the exception handler increases. How-
ever the latency of the exception handlers will increase, and so will
the HWDS context switch due to needing to move more data. For
small numbers of DS operations per period the larger HWDSs un-
derperform smaller HWDSs; at such small sizes of DS operations
the software DS typically performs better than any HWDS.

The PAA algorithm (Algorithm 1) iterates through tasks from the
lowest priority to the highest priority choosing at each task whether
to use the HWDS by comparing the WCET of the software DS
with the WCET of the HWDS. This algorithm tracks the maximum
HWDS context switch of the tasks that it has assigned to the HWDS
so that it can compute the WCET accurately taking into account the
context switch costs of lower-priority tasks. Iterating from low to
high priorities allows the algorithm to move in one direction. The
reason that this algorithm is not optimal is that higher-priority tasks
that use the HWDS have a WCET that depends on whether (and



which) lower-priority tasks use the HWDS. Because the algorithm
only moves in one direction it does not allow for re-evaluating the
assignment of lower-priority tasks and therefore can miss feasible
assignments.

Algorithm 1: Priority-Aware Assignment (PAA)

Input: n: number of tasks, τ : task set, N : max DS sizes, O: max DS
operations, S: max HWDS size

1 bτ = ∅

2 eτ = ∅

3 ccm = 0
4 for i from n to 0 do

5 bei = get_hwds_wcet (Ni,Oi,S, ccm)

6 Ŝi = S

7 for s < S do

8 bei = get_hwds_wcet (Ni,Oi,s, ccm)
9 if e < bei then

10 bei = e

11 Si = s

12 end

13 end

14 eei = get_swds_wcet (Ni,Oi)
15 if bei < eei then

16 add_to_set (bτ , Ti)
17 if bci > ccm then

18 ccm = bci

19 else

20 add_to_set (eτ , Ti)

21 end

22 return bτ ,eτ

CSCAA (Algorithm 2) is similar to PAA except for the cost
heuristic that gets added to the HWDS WCET. We introduce the
cost heuristic to penalize low-priority tasks for using the HWDS.
This heuristic tries to offset the effect of lower-priority tasks on
higher-priority tasks. In particular, the WCET of high-priority tasks
affects low-priority task response times, so reducing high-priority
task WCETs should benefit response times for a set of tasks. Of
course the penalty may prevent low-priority tasks from using the
HWDS when they could (and should), so this algorithm can miss
feasible assignments. The cost heuristic can be any function that
gives a penalty to a task that—if it uses the HWDS—would in-
crease the maximum HWDS context switch time compared to tasks
with a lower-priority. For this work we used a cost heuristic that
multiplies the amount a task will increase the maximum HWDS
context switch latency times the number of tasks with a higher pri-
ority. So in Algorithm 2 the function get_cost would return
(ci − cm) ∗ (n − i) or 0, whichever is greater.

5. EXPERIMENTS
We conducted a series of experiments to evaluate HWDSs in the

context of hard real-time systems. These experiments use a HWPQ
as an example of a HWDS. We use synthetic task sets to explore the
parameter space of the HWPQ as the parameters relate to WCET.
We also demonstrate how this work can apply in the real-world by
examining the benefits of our approach for workloads approximat-
ing real applications.

We implemented a HWPQ within Simics/GEMS [17]—a func-
tionally correct cycle-accurate full system simulator for an out-of-
order architecture (based on the ALPHA) that executes the SPARC
v9 instruction set. We implemented OS support for HWPQs in
the Real-Time Executive for Multiprocessor Systems (RTEMS) [1]
open source real-time operating system, which can run on Sim-
ics/GEMS. The architectural parameters we chose are representa-
tive of an embedded system: 75 MHz CPU, 80 cycle memory la-
tency, and a 4-issue 5-stage pipeline. We extended the SPARC in-
struction set to support new HWPQ operations directly and added a

Algorithm 2: Context Switch Cost-Aware Assignment
(CSCAA)

Input: n: number of tasks, τ : task set, N : max DS sizes, O: max DS
operations, S: max HWDS size

1 bτ = ∅

2 eτ = ∅

3 ccm = 0
4 for i from n to 0 do

5 bei = get_hwds_wcet (Ni,Oi,S, ccm)

6 cSi = S

7 for s < S do

8 e = get_hwds_wcet (Ni,Oi,s, ccm)
9 if e < bei then

10 bei = e

11 Si = s

12 end

13 end

14 eei = get_swds_wcet (Ni,Oi)
15 if bei + get_cost (i,n,Si,ccm) < eei then

16 add_to_set (bτ , Ti)
17 if bci > ccm then

18 ccm = bci

19 else

20 add_to_set (eτ , Ti)

21 end

22 return bτ ,eτ

functional unit to execute the new instructions. This functional unit
operates atomically and non-speculatively. Although the HWPQ
can achieve single-cycle latencies for PQ operations, restricting
the unit to be atomic and non-speculative increases the latency to
around 12 cycles for the simulated architectural parameters.

The values we measured for WCET parameters underlie all of
the experimental results we present. To estimate the WCET of PQ
operations we implemented an implicit binary heap as a represen-
tative software PQ. We designed a series of measurement tests that
build a PQ up to a specified size and then measure the cost of a PQ
operation at that size. We measured five specific events in isolation:
enqueue, dequeue, overflow exception, underflow exception, and
HWDS context switch. The latter three are only relevant and mea-
sured for a HWPQ. We turned off all caching to obtain the WCET
of PQ operations. Our approach is pessimistic, but lacking a time-
predictable cache leaves few options. As a result the measurements
we take are dominated by the memory access latency.

To force the worst-case conditions for the software PQ we mea-
sure an enqueue of a node with priority less than the highest-priority
node in the heap so that the enqueue operation must move the new
node to the top of the heap resulting in a maximum number of
swaps (equal to the log base-2 of the PQ size). A dequeue of the
minimum value causes a maximum amount of work in a heap.

For the HWPQ enqueue and dequeue WCET the HWPQ must
be in a state that will not cause an exception. Before measuring
enqueue we ensure the HWPQ has enough spare capacity to accept
the new node, and before measuring dequeue we ensure at least
one valid node is at the head of the HWPQ. To generate the WCET
overflow the nodes that get spilled must cause the spill algorithm
to do maximum work. We implemented a merge-sorted linked list
that iterates from the tail of the spilled nodes to the head (which
has highest priority), so to cause the WCET overflow we empty the
HWPQ and then fill it with new nodes that have priority less than
the head of the linked list. Thus we ensure that the spill algorithm
iterates through the entire linked list before completing. The un-
derflow handler has a special condition under which it has to spill
nodes; when the HWPQ is full of invalid nodes it must fill from the
spilled nodes and also spill some of its invalid nodes. We gener-
ated the worst-case condition of an underflow by enqueueing nodes



with priority less than the head of the spilled nodes (as with the
overflow case), invalidated the HWPQ, and then dequeued. The
dequeue causes an underflow exception, and the exception handler
finds that no capacity exists to fill the HWPQ and so spills nodes.
The spills will take maximum time because the handler spills nodes
with higher priority than the nodes already in the spill data struc-
ture. Finally the underflow handler will fill the HWPQ. To cause
the WCET of the HWPQ context switch we filled the HWPQ to its
maximum size using two separate PQs ensuring the HWPQ con-
tains nodes with priority less than the head of the spilled nodes.
Then we cause a HWPQ context switch by issuing an operation
for the PQ that is not currently loaded in the HWPQ. The context
switch handler spills all of the nodes in the HWPQ which (because
of the ordering of nodes) takes maximum time, and then fills the
HWPQ with nodes from the next PQs spill data structure.

5.1 Schedulability
To characterize the HWPQ parameter space and evaluate the

HWPQ assignment algorithms we designed a series of experiments
using synthetic task sets generated as follows. Create a set of n
tasks by choosing integer task periods pi uniformly from [1, 1000].
Choose task utilizations ui uniformly at random from [0.001, 1)
implicitly selecting task execution times ei. After assigning all n
tasks a utilization, normalize each ui so that

Pn

i=0 ui = U , where
U is some target utilization value. This method of generating tasks
provides a variety of task sets while controlling the number of tasks
and the task set utilization. We use response time analysis (Equa-
tion 1) to ensure the generated task set is schedulable, and regener-
ate any sets that fail the schedulability test.

We then modify each generated task set to include PQ operations
parametrized by a max PQ size, max HWPQ size, PQ implementa-

tion, and number of operations to complete in a period. Using the
task’s period and utilization we calculate its compute time and add
the WCET determined by the PQ parameters. PQ size and imple-
mentation determine the WCET for any given operation and the PQ
size with the number of operations determines the WCET for the
HWPQ exceptions. The HWPQ and PQ sizes determine the WCET
for the HWPQ context switch.

We varied the parameters of max PQ size, PQ implementation,
and number of operations in a controlled way. For each partic-
ular assignment of parameters we generated 10000 task sets and
attempted to assign PQ usage for each task set using all four of
the algorithms (SOA, HOA, PAA, and CSCAA) presented in Sec-
tion 4. For each task set and assignment algorithm we determine
whether the task set is schedulable after PQ assignment. For these
experiments we set the max HWPQ size at 1024 and let PAA and
CSCAA choose to limit individual tasks to a smaller size; in prac-
tice these algorithms typically—but not always—use the largest
possible HWPQ size.

Figure 2 shows the results of our experiments as both the max PQ
size and the number of PQ operations per period vary by powers of
2 from 16 to 8192. For this particular figure we set the task set uti-
lization U to 0.6 and the number of tasks per task set to 8. The plot
shows the percent of task sets (out of 10000) that are schedulable
after PQ assignment for each combination of PQ size and number
of PQ operations. We also plot a line below which each combina-
tion feasibly schedules at least 90% of its task sets. These results
show how the different assignment algorithms work, and in par-
ticular show that PAA dominates SOA and HOA for much of the
explored space. The threshold line also shows that differences exist
between the schedulability of task sets assigned using PAA versus
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Figure 2: Schedulability of random task sets for utilization without PQ operations fixed at 0.6 and task set size at 8. Varying

utilization and the number of tasks moves the threshold lines, which we show in later figures.
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Figure 4: Schedulability with U = 0.8. As utilization increases

threshold lines move down because applications cannot accom-

modate extra work induced by PQ operations.

CSCAA with neither outperforming the other for all parameters al-
though CSCAA generally does better than PAA.

Figure 3 shows just the threshold lines this time for a task set uti-
lization U at 0.4 and again with the tasks fixed at 8; Figure 4 shows
how increasing U affects schedulability by measuring schedulabil-
ity with U at 0.8 and with 8 tasks. When system utilization is low
the extra slack available in the system allows for PQ operations to
use more time which leads to more task sets being schedulable. In
general the threshold lines move up indicating that for a given num-
ber of PQ operations the task sets having PQ sizes twice as large
are schedulable over 90% of the time with the extra 20% available
CPU time.

Figure 5 again shows the threshold lines, this time with U at 0.6
and with 4 tasks; Figure 6 shows how increasing the number of
tasks with fixed U affects schedulability by keeping U at 0.6 and
increasing the number of tasks to 16. The extra tasks increase the
global number of PQ operations (since every task does the same
PQ workload). Doubling the tasks has the effect of reducing by a
factor of two the PQ sizes of tasks sets that are schedulable at least
90% of the time for a given number of PQ operations (two factors
if compared to half as many tasks and 20% more CPU time).

5.2 Real-world Applications
The synthetic task sets demonstrate HWPQs with the PAA and

CSCAA algorithms can decrease utilization hence increase schedu-
lability of applications that use priority queues. In this section we
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Figure 5: Schedulability with 4 tasks. As the number of tasks

decreases the threshold lines move up. Halving the number of

tasks more than doubles the number of schedulable task sets.
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consider how HWPQs might benefit real-world applications, which
may not exhibit behavior that is similar to the synthetic task sets.
Two important application domains in real-time and embedded sys-
tems are navigation and terrain mapping. Both of these domains
contain applications that use a PQ as a central data structure in
their main algorithms. From the navigation domain we use a ver-
sion of Dijkstra’s algorithm that is executed on real-world maps
taken from the DIMACS shortest path implementation challenge
benchmarks [2]. From the terrain mapping domain we have an im-
plementation of the grey-weighted distance transform that executes
on a random 3D image; this application has been used previously to
evaluate a variety of software PQs [16]. We call these applications
GPS and GWDT respectively. Both applications and their inputs
are available online, see [16, 2].

In order to simulate these real-world applications we measured
their behavior with respect to PQ parameters that affect HWPQ
WCET; table 1 summarizes the measurements. We instrumented
these applications with additional performance counters in order to
measure the maximum PQ size, number (and type) of PQ opera-
tions, and the time taken by the PQ operations. For the GWDT ap-
plication we included the peek, enqueue, and dequeue operations
and also PQ allocation and freeing; the software PQ we used for
the measurements was the 4-heap [16]. For the GPS application we
included only enqueue and dequeue operations.

We executed these applications without modifications using tim-
ing mechanisms that are provided with the applications. These



App. Input PQ Size PQ Operations PQ time

GWDT
32 pixels 16303 168840 31.4%
64 pixels 56447 1353326 33.5%

GPS

NYC 925 528693 28.5%
S.F. BAY 886 642540 27.1%
Colorado 945 871332 30.1%
Florida 1413 2140753 28.4%
NW US 1723 2415891 29.2%
NE US 1796 3048907 26.7%
California 2355 3781631 27.4%
Great Lakes 1810 5516239 27.9%
Eastern US 2336 7197247 24.6%
Western US 4281 12524209 24.3%
Central US 5086 28163632 22.4%

Table 1: PQ behavior in real-world applications

timers query the host system for the user time of the process run-
ning the application. The timing elides all startup and shutdown
costs. To time individual operations we added timer calls before
and after each PQ operation and ran the application both unmod-
ified and with the timer calls. The difference in total time taken
between the two runs is the overhead for making the extra timer
calls, half of which we deducted from the sum of the time taken
for PQ operations (because the time accounted toward the PQ op-
erations includes half of the timer overhead). Then the ratio of the
time taken for PQ operations to the total time taken of the unmod-
ified application is a measure for the amount of time spent by the
application in the PQ.

Using the parameters that we measured from running the appli-
cations we model two new applications that simultaneously run x
numbers of small (32 pixel) GWDT tasks, y numbers of local GPS
search tasks, 1 large (64 pixel) image processing task, 1 regional
GPS search task, and 1 long-distance GPS search task. One appli-
cation lets x vary from 0 through 12 with y fixed at 1 (call it the
GWDT application) and the other application lets y vary from 0
through 12 with x fixed at 1 (call it the GPS application). The total
number of tasks in either application varies from 4 to 16.

For each application at a given number of tasks we generate
10000 random task sets with the utilization drawn randomly as be-
fore (uniform in [0.001, 1] then normalized to a target U after all
tasks have a utilization) but now with the period determined by the
PQ parameters we obtained from measuring the applications. In
particular we determine the WCET of a software PQ (using our
numbers from the implicit binary heap) for the maximum PQ size
and number of PQ operations for the task and use the percent of
time the task should spend on the PQ to determine how long its
total compute time should be. Then we compute the task’s period
by dividing its total compute time by its randomly generated uti-
lization. We regenerate any task set that does not pass the response
time analysis.

The result of task set generation is a set of tasks that use a soft-
ware PQ and whose task set has a utilization equal to a known value
U . We then remove the software PQ WCETs from the tasks and run
each assignment algorithm (SOA, HOA, PAA, and CSCAA) on the
task set. The SOA algorithm will result in a schedulable task set
with a utilization equal to U . Instead of using schedulability as the
metric for performance in these experiments we use the amount the
assignment algorithm improves (reduces) task set utilization.

Figure 7 shows how HOA and CSCAA improve utilization over
SOA for the application that varies the number of tasks running
a local GPS search; each point is the arithmetic mean of the dif-
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ing small GWDT.

ference between the utilization of SOA—fixed at 0.7—and one
of the assignment algorithms (either HOA and CSCAA) averaged
across 10000 trials, and with error bars showing the sample stan-
dard deviation in both directions (one standard deviation up and
one down). The local GPS search is executing the benchmark chal-
lenge for New York City, with the regional and long-range searches
executing the northeastern US and eastern US benchmarks respec-
tively. Larger numbers are better and represent the amount by
which the utilization of the task set as a whole goes down; neg-
ative numbers indicate that the assignment algorithm does worse
than SOA. Figure 8 shows the same measurements but taken as the
number of tasks running the small (32 pixels) GWDT (32 pixels)
increases. The results for PAA are not shown because they overlap
closely with those for CSCAA. The gains for the GPS application
are around 10–16% utilization which represents an improvement of
14–22% over the software PQ utilization.

The real-world applications demonstrate some interesting results.
First is that just using a HWPQ (HOA) yields rather large swings
in utilization; the smallest GWDT task has a standard deviation of
around 7% utilization. Second is that for some applications the



benefit of using HWPQs may actually increase as the number of
tasks increases; conversely the benefits may decrease as shown by
the GWDT results. Even so the CSCAA algorithm produces useful
assignments of the HWPQ to tasks in these real-world task sets that
improve task set utilization and therefore provide extra slack time
in the system for other tasks to complete. The extra utilization can
be useful for executing sporadic or background tasks.

6. RELATEDWORK
This work builds on research in hardware queues, primarily of

the FIFO and PQ varieties. HWPQs have been cited widely for
both network routing and real-time scheduling. Moon et al. [19]
compare four approaches to hardware PQs for high-speed networks
and introduce an approach that melds two of the previous solutions.
Kim and Shin [10] describe an architecture for EDF scheduling for
ATM switch networks and introduce deadline folding to circumvent
limitations in the range of priority values. Bhagwan and Lin [4]
introduce a heap-based hardware PQ with pipelined stages of the
enqueue and dequeue operations. The Spring Scheduling Copro-
cessor (SSCoP) [6] is one of the first examples of a hardware task
scheduler and introduces simple queues for the set of scheduled
tasks. Others have implemented hardware scheduling using some
form of custom logic and a HWPQ [22, 12, 11, 5, 13]. In con-
trast to the prior work, which focuses on hardware support for a
single fixed-size PQ, our work demonstrates how arbitrarily-large
PQs can share a HWPQ.

Carbon by Kumar et. al [14] provides hardware acceleration
for multicore task scheduling with task LIFOs, prefetchers, and
work stealing in hardware to support fine-grained thread-level par-
allelism. Carbon exposes a task queue API in the form of ISA ex-
tensions, so it is similar to the HWDS paradigm. It differs in that the
queues are used specifically for task scheduling, which means that
applications only benefit if Carbon extracts sufficient fine-grained
TLP. Carbon provides no benefit to serial workloads and requires
small task sizes to see improvement over software scheduling. A
HWDS configured as a LIFO would be similar to the single core
configuration of Carbon. Otherwise, the two approaches are not
directly comparable.

Chandra and Sinnen [7] investigate HWDSs in the context of in-
tegrating Java with reconfigurable computing. The authors use a
shift-register PQ to speed up Prim’s minimum spanning tree algo-
rithm. Their work uses a single PQ and HWPQ. In addition to the
usual PQ operations, the authors investigate how to increase the
queue length, use non-integer priority values, and add new opera-
tions. Our work differs from theirs by supporting large queues with
an exception model instead of relying on library interpositioning
on PQ accesses; we also allow multiple PQs to share the HWPQ.

For real-time systems a promising approach for providing a time-
predictable memory system is to use a scratchpad memory [21].
Scratchpads can provide predictable access times and software con-
trol over code [29] and data [25]. Some problems with scratchpads
include its limited size and the difficulty in choosing which data
to store. The scratchpad memory management unit (SMMU) [27]
uses custom hardware to split a virtual address space between a
scratchpad and traditional RAM. SMMU uses runtime mechanisms
to copy objects between the two memories so that once an ob-
ject is moved into the scratchpad that object is accessed with pre-
dictable timing. The SMMU provides time predictability for ac-
cesses to the scratchpad and achieves WCET approaching that of
the average-case performance with caching [26]. A downside for
the SMMU is that it can actually increase WCET when applica-
tions exhibit poor temporal locality for object references because
the time taken to copy an object into the scratchpad may negate

any gain due to object reuse. Large objects also present a problem
due to the spatial constraints of the scratchpad. HWDSs differ from
scratchpads in that a HWDS relies on a high-level abstraction—
the data structure—and provides support for high-level operations.
Scratchpads rely on memory regions that contain an active work-
ing set without using any knowledge about application (data) be-
havior. So scratchpads may be generally more useful, yet HWDS
have more knowledge available and are able to make use of known
properties of data structures. HWDS uses these known properties
to exploit parallelism and achieve speedup that scratchpads alone
cannot. Combining the two approaches to use a HWDS with a
scratchpad as the backing store—somewhat like how the SMMU
splits storage between a scratchpad and RAM—may be an inter-
esting research direction for reducing the WCET of overflow and
underflow exception handlers.

7. CONCLUSION
In this paper we have demonstrated that HWDSs can benefit real-

time systems by reducing worst-case execution times even when
data structure sizes exceed the size of the HWDS. Systems software
support provides flexibility to remove size and sharing limitations
of hardware so that applications can benefit from using HWDSs.
We devised two new algorithms that assign tasks to use either a
HWDS or a software DS and show those algorithms outperform
just using the software DS or just using the HWDS for much of
the explored application and parameter space. We demonstrated a
HWPQ as an example of a HWDS and showed how real-world ap-
plications for navigation and image processing could obtain practi-
cal improvements in the range of 5–15% of total utilization when
using our approach. Our results show promise for the HWDS ap-
proach and open new avenues of research into new HWDSs, im-
provements in the hardware to ease the integration of hardware and
software, and better DS abstractions for programming.
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