
RTEMS SMP FOR LEON3/LEON4 MULTI-PROCESSOR DEVICES

Daniel Cederman1, Daniel Hellström1, Joel Sherrill2, Gedare Bloom3, Mathieu Patte4, and Marco Zulianello5

1Aeroflex Gaisler, Kungsgatan 12, SE-411 91, Göteborg, Sweden, Tel: +46 31 7758650, Fax: +46 31 421407
{daniel.cederman, daniel.hellstrom}@gaisler.com

2OAR Corporation, 7047 Old Madison Pike Suite 320, Huntsville AL 35806, Tel: +1 256-319-2768,
joel.sherrill@oarcorp.com

3Dept. of Computer Science, George Washington University, Washington, DC, gedare@gwu.edu
4Airbus Defence and Space / Space Systems, 31 rue des Cosmonautes Z.I. du Palays, 31402 Toulouse Cedex 4 France,

Tel: +33562199032, mathieu.patte@astrium.eads.net
5ESTEC, Keplerlaan 1, PO Box 299, NL-2200 AG Noordwijk, The Netherlands, Tel: +31 71 565 8933, Fax: +31 71 565

5420, marco.zulianello@esa.int

1. ABSTRACT

When multi-core processors are used in the space indus-
try, they are mostly used in AMP configurations. The cost
of increased complexity and difficulty in analyzing SMP
systems has been deemed too high in comparison with
the benefits of more processing power. A reason for this
is the lack of easy to analyze operating systems capable
of SMP configurations.

In this paper we present an European Space Agency
(ESA) activity aimed at bringing easily accessible SMP
support to GR712RC and ESA’s future Next Generation
Microprocessor (NGMP). This will be achieved by ex-
tending the RTEMS operating system with SMP capa-
bilities and by providing parallel programming models
and related libraries to exploit the intrinsic parallelism of
space applications. The work will be validated by port-
ing the single-core Gaia Video Processing Unit space ap-
plication used in ESA’s Gaia satellite project to RTEMS
SMP running on GR712RC and NGMP.

The paper describes the ongoing effort and gives an
overview of the challenges faced in extending a real-time
OS to the SMP domain. The activity is funded by ESA
under contract 4000108560/13/NL/JK. Gedare Bloom is
supported in part by NSF CNS-0934725.

2. INTRODUCTION

Multi-core processors are commonplace in many areas,
but currently not within the space industry. The added
complexity in analysing software behaviour has so far not
outweighed the benefit of fewer components and more
processing power. This might however change in the fu-
ture. To be prepared ESA commissioned the System Im-
pact of Distributed Multicore System project [10] to bet-
ter understand how multicore processors are best utilizied

This paper was presented at DASIA 2014 in Warsaw.

given the needs in the space industry. Conclusions drawn
from the project were that two components were missing
for optimal usage of ESAs multi-core NGMP for space
payloads. The first was the lack of readily available and
easily analysed real-time OS support for SMP configu-
rations. The second was supporting libraries for parallel
programming.

The activity presented in this paper takes a step to-
wards remedying this situation by enabling and extend-
ing the SMP support of the real-time operating system
RTEMS [8]. At the end of the activity it will be possi-
ble to develop SMP applications for RTEMS executing
on both the commercially available GR712RC and on
ESA’s future NGMP multi-core processors. In addition
the activity will provide implementations of APIs for ef-
ficient message passing and task-based programming in
RTEMS. The SMP support and the task-based program-
ming API will be validated by porting the Gaia Video
Processing Unit from ESA’s billion-star surveyor Gaia
that was launched in December 2013 [5].

The NGMP system used will be the functional prototype
GR-CPCI-LEON4-N2X which is a system-on-chip with
a quad-core 32-bit LEON4 SPARC V8 processor con-
nected to a shared 256 KiB Level-2 cache and several
high-speed interfaces [3]. The GR712RC is an existing
flight part with a dual-core LEON3FT SPARC V8 pro-
cessor system suitable for advanced high reliability space
avionics [1].

The activity is being carried out by a consortium led
by Aeroflex Gaisler, developers of the LEON processor
family, together with the OAR Corporation, maintainers
of the RTEMS project, and Airbus Defence and Space,
prime contractor of the Gaia software architecture.

3. RTEMS

RTEMS is a real-time operating system, popular in the
European space industry. It is open-source with a com-



munity driven development. Currently it can be used in
a single software instance or in an AMP configuration
where multiple single-processor instances run in paral-
lel on different processors. Some support for SMP exists
in the development branch of RTEMS, but no official re-
lease of the code has been made. The RTEMS SMP wiki
gives an overview of the state of the SMP support [9]. Re-
cently the support has been improved for ARM, X86 and
PowerPC QorIQ by the community. At the start of the
activity, however, the SMP code was not operational on
SPARC platforms, such as the NGMP, due to missing im-
plementations and/or bugs. The first part of the work thus
consisted in identifying missing and broken functionality.

With an application written for a SMP system it is pos-
sible to achieve higher performance, but this comes at
the cost of added complexity. Assumptions that are com-
monly made on single-core systems will be broken when
executed on a multi-core platform. It is no longer true
that the interrupt handler or highest priority task can be
assumed to run in solitude, as a low priority task might
run concurrently on another core. To ease the transition
over to SMP, the scheduler should have support for spec-
ifying how tasks are allowed to be scheduled. RTEMS
currently supports two basic SMP scheduler, the Simple
SMP Priority Scheduler and the Deterministic Priority
SMP Scheduler. They both have linear complexity and
always schedule the P ready tasks with the highest prior-
ity, where P is the number of processing units. Currently
they have no support for declaring processor affinity for
tasks. The addition of this functionality will be one of the
main contributions of this activity and is required for the
proper implementation of the activity demonstrator.

The following subsections will go into more detail on the
importance of processor affinity and give an overview of
some of the other main areas of improvement addressed
in this activity.

3.1. Processor Affinity

The processor affinity capability may be used in applica-
tions and the kernel in many different ways. Below is a
list of a few common use cases in applications.

• For porting. Processor affinity may allow uni-core
code to run by forcing sensitive code onto one spe-
cific processor, mimicking a uni-core system in parts
of the application.

• For performance improvements. Always executing
a set of non-interfering tasks on the same CPU in-
creases the L1-cache hit-rate for that task set. It al-
lows the user a more fine grained control over task
scheduling and synchronization. The user may also
do load balancing of the processors.

• Porting drivers. Uni-processor drivers typically turn
off processor interrupt to lock out the interrupt ser-
vice routine (ISR). However on a multicore system
an ISR may be called on another CPU leaving the in-
terrupt lock-out ineffective. By routing the interrupt

to the same CPU as the user task calling the driver
the problem just described is effectively avoided.

The processor affinity is also a key functionality for im-
plementing many parallelization libraries, such as the
ones described in this paper. Given the above use cases,
one can easily recognize the great importance of the pro-
cessor affinity capability for multi-core applications, and
space applications are no different.

As part of the activity, the RTEMS SMP schedulers will
be enhanced to support processor affinity. This is not triv-
ial, as real-time scheduling with affinity remains an area
of open research, especially for schedulability analysis of
tasks that can migrate across cores [6]. When finished the
schedulers will be able to limit the execution of a task to
one or a set of processors, identified by the user through a
new API. The intention is for the new affinity API to align
with the APIs on GNU/Linux, including cpuset manipu-
lation methods. Similar methods will be added to both
the POSIX and the classic RTEMS API. The pluggable
scheduler framework used by all schedulers in RTEMS
to schedule tasks is not expected to change with the in-
troduction of the affinity feature. The design is such that
both non-affinity and affinity capable SMP schedulers are
able to coexist in source. This ensures that affinity sup-
port will not be limited to the SMP schedulers, nor that
it will impose the need for other schedulers to implement
processor affinity.

The scheduler simulator provided with RTEMS will be
used to simplify the implementation and verification
work [4]. It allows the new capabilities to be tested prior
to running on the real system, avoiding the full complex-
ity of the multi-core system.

3.2. Cache Control

The RTEMS subsystem for cache control does currently
not support SMP. In some cases it is only the local cores
cache that is flushed, when all cores’ caches should have
been invalidated/flushed. This will be corrected by en-
hancing the cache control library to implement functions
that operate on all cores cache. The planned approach is
to signal to other cores using Inter Processor Interrupts
(IPI) and implement an IPI handler that operates on the
interrupted cores’ cache.

3.3. Trace Library

RTEMS support a capture engine with tracing capabili-
ties that can be used for debugging and to analyze be-
haviour and timing of the application. It is however cur-
rently limited to uni-processor support. Extending it to
trace simultaneously on multiple processor cores imposes
new problems. It would not be adequate that a processor
hangs for other than a very short moment when adding a
trace sample. One important reason other than it affects
the application and determinism, is that tracing of inter-
rupt and trap handlers are to be supported which are very



Figure 1. GR712RC Development Board

time critical. The planned SMP extension of the capture
engine will therefore add trace samples using a lock-less
implementation, which is supported by the LEON archi-
tecture. The implementation will revert to a global lock
on unsupported architectures.

3.4. Porting to GR712RC/NGMP

The state of the RTEMS SMP on LEON when starting
this work was broken. The early development has fo-
cused on repairing existing problems related to SMP on
the targeted hardware and to add basic functionality re-
quired for the existing SMP implementation. To simplify
development and debugging, the first stage of the imple-
mentation was performed using the GRSIM multi-core
simulator [2]. It was then followed by verification on the
actual GR712RC and NGMP platforms.

Both GR712RC and NGMP are supported by the same
RTEMS BSP, the LEON3 BSP, which can be used
for both LEON3 and LEON4. Thanks to the AMBA
Plug&Play bus infrastructure and the LEON architecture
as a whole, it was possible to maintain a minimum set of
difference in code. Most of the platform specific issues
are handled at boot time and does thus not affect RTEMS.

The NGMP has several new features that primarily facil-
itates easier AMP operation. This does not negatively
impact SMP operation and the GR712RC and NGMP
are fully compatible for areas such as interrupt handling
and the basic function of peripherals. All RTEMS SMP
development has been performed so that the code will
be able to run on the hardware features provided by
GR712RC. Backward compatibility with the new design
ensures that the same code will run on the NGMP.

The Atomic Layer of RTEMS can now also take ad-
vantage of the CAS instruction available in LEON and
SPARC V9 architecture.

4. PARALLEL PROGRAMMING MODELS

To efficiently take advantage of multi-core processors in
SMP system requires different programming models than

Figure 2. Quad-Core LEON4 Next Generation Micropro-
cessor Evaluation Board

for the sequential case. Common models for parallel pro-
gramming include task-based programming, where the
work is divided into tasks that can be distributed among
the available cores, and message passing, where threads
on different cores communicates and synchronizes at
given points using small efficient messages. Both types
of programming models will be implemented as part of
the activity. The support will be given in the form of two
APIs adhering to the Multicore Task Management API
(MTAPI) Specification [12] and the Multicore Commu-
nications API (MCAPI) Specification [11] by The Mul-
ticore Association, Inc. Both APIs have been designed
with embedded systems in mind and tries to minimize la-
tency and footprint at the cost of some of the flexibility
of larger parallel programming suites.

The API specifications defines two concepts, domain and
node. A node is an executable unit, such as a thread,
a core or a cpu. A domain is a set of such nodes. It
is up to the specific implementation of the API to de-
cide the scope of the node and the domain. For the
RTEMS implementation it is beneficial to define a node
as an RTEMS task with affinity to one unique core. A
domain in turn consist of a single multi-core processor.
For the GR712RC this would mean one domain and two
nodes, while for the NGMP it would mean one domain
and four nodes. The two APIs will both use the RTEMS
classic API for internal OS-specific operations and will
utilize a bounded, pre-allocated, amount of memory and
resources.

4.1. Message Passing (MCAPI)

The message passing API supports three types of commu-
nication. 1) Connection-less messages, 2) packet chan-
nels for variable size messages ordered in FIFO order,
and 3), scalar channels, used to transfer words up to 64
bits in width in FIFO order. All three types allow the
communication to be either blocking or non-blocking. In
blocking mode the send and receive functions do not re-
turn until the message has been received or sent by the
remote node. In non-blocking mode, the send and receive
functions returns immediately. This allows for other work



to be performed while waiting for the remote node. When
no more work is suitable for processing until the message
has been handled, the node can use a wait function that
pauses execution until the remote node has sent or re-
ceived the message.

There currently exists an open source implementation of
MCAPI with a BSD license called OpenMCAPI, written
and maintained by Mentor Graphics [7]. OpenMCAPI
has been designed to be relatively easy to port, which
lead it naturally to be the base of the RTEMS port. By
not diverting too much from the original implementation,
the extensive unit and functionality tests for OpenMCAPI
can be reused. The main porting work will concist in
providing RTEMS specific functionality for shared mem-
ory communication and to do adaptions to the code to
cope with the new node definition that allows for nodes
to share the same address space. The new implementa-
tion will also be optimized to assure that it performs well
on the LEON architecture.

4.2. Task-based Programming (MTAPI)

The MTAPI library provides common functionality for
task-based programming, such as spawning and waiting
for tasks, but differs from other systems in the way it di-
vides the conventional task into three different concepts.
These are job, action, and task. A job represents some
work that can be performed in the system, such as an FFT
operation. An action is a concrete function that can per-
form the work represented by a job. For the example this
could be a software function or a hardware implementa-
tion of the FFT algorithm. A task in the MTAPI setting is
then an invocation of a particular job to be performed by
an action. An action is node specific and a job could be
associated with many actions. This allows for nodes with
special hardware support to implement a job differently
than a node that lacks it. It also allows for affinity and
load distribution by selecting which nodes that will im-
plement actions for a specific job. It is then up to the run-
time to select which action that implements a given job
that should be used for performing a task. The API also
supports FIFO ordering and grouping of spawned tasks
using queues and task groups.

There currently does not exist any public open source im-
plementation of MTAPI. For this reason the MTAPI will
implemented from scratch for RTEMS. The first version
of the library will use a centralized scheme for load bal-
ancing, where nodes ask a common data structure for new
applicable tasks when they have finished their previous
work. This can later be extended with support for work-
stealing for multi-domain settings, where communication
and synchronization costs are higher. MTAPI could po-
tentially take advantage of MCAPI as its internal commu-
nication protocol, but to lower the overhead and footprint,
it was decided not to. Most applications will with high
probability only utilize one of the APIs. MCAPI could
however be a candidate for communication between do-
mains.

5. DEMONSTRATOR

RTEMS SMP and the MTAPI task programming library
will be evaluated by porting a flight-tested space pay-
load software, the Gaia Video Processing Unit applica-
tion. The porting will be performed by Airbus Defence
and Space, which was the prime contractor for the de-
velopment of the software architecture for the Gaia satel-
lite. The Gaia VPU application is a typical example of
one of the two use cases for multi-core processors iden-
tified in the SIDMS study. It is an application that re-
quires both high processing performance and on-board
re-programmability. The source code base used for the
demonstration will be the same as the one used on the ac-
tual spacecraft and consists of about 32000 lines of code.

The VPU software is structured as a large software
pipeline made of several relatively independent tasks. It
is therefore a good candidate for parallelization. The
source code base that will be used for the demonstrator is
fully instrumented: the execution timings of all the tasks
can be measured and reported. This will enable us to pre-
cisely monitor the performance of the parallel implemen-
tation and to optimize the selected architecture.

Airbus Defence and Space has access to the validation
models of the VPU algorithms, and will therefore be able
to validate the functional behaviour of the demonstration
application using the same validation models as the one
used for the actual spacecraft. In the actual GAIA space-
craft, the VPU software is executed on a PowerPC pro-
cessor mounted on a Maxwell SCS750 board, which is
ITAR. As the NGMP and other future LEON multi-core
processors aim at becoming the European counterpart to
the SCS750 board, it will be very interesting to compare
the performances achievable by the demonstrator to the
ones of the SCS750 board.

6. CONCLUSION

Increasing the usage of SMP systems in the space indus-
try requires that well known and well understood soft-
ware, such as RTEMS, is enhanced to fully support the
SMP setting. The intent of this activity is to take RTEMS
closer to this goal. At this stage of the activity it is already
possible to execute software on GR712RC and NGMP
in a SMP configuration using RTEMS. With the upcom-
ing processor affinity support the porting of single-core or
AMP software will be simplified and it will be possible to
support high performance communication and task man-
agement APIs such MCAPI and MTAPI. The final port-
ing of flight-tested space payload software from single-
core to multi-core SMP will then act as a demonstration
of the benefit and feasability of SMP for space applica-
tions.



REFERENCES

[1] Aeroflex Gaisler AB. GR712RC Dual-
Core LEON3FT SPARC V8 Proces-
sor. www.gaisler.com/index.php/
products/components/gr712rc. Ac-
cessed: 2014-01-10.

[2] Aeroflex Gaisler AB. GRSIM LEON MP
Simulator. www.gaisler.com/index.php/
products/simulators/grsim. Accessed:
2014-01-10.

[3] Aeroflex Gaisler AB. Quad-Core LEON4
Next Generation Microprocessor Evaluation
Board. www.gaisler.com/index.php/
products/boards/gr-cpci-leon4-n2x.
Accessed: 2014-01-10.

[4] Gedare Bloom and Joel Sherrill. Scheduling and
Thread Management with RTEMS. In the 3rd
Embedded Operating Systems Workshop (EWiLi),
2013.

[5] European Space Agency. ESA Science & Technol-
ogy: Gaia. sci.esa.int/gaia/. Accessed:
2014-01-10.

[6] A. Gujarati, F. Cerqueira, and B.B. Brandenburg.
Schedulability analysis of the linux push and pull
scheduler with arbitrary processor affinities. In
25th Euromicro Conference on Real-Time Systems
(ECRTS), pages 69–79, 2013.

[7] Mentor Graphics. OpenMCAPI. bitbucket.
org/hollisb/openmcapi. Accessed: 2014-
01-10.

[8] OAR Corporation. RTEMS Real Time Operating
System. www.rtems.org. Accessed: 2014-01-
10.

[9] OAR Corporation. RTEMS SMP Wiki. wiki.
rtems.org/wiki/index.php/SMP. Ac-
cessed: 2014-01-10.

[10] Mathieu Patte, Alfons Crespo, Marco Zulianello,
Vincent Lefftz, Miguel Masmano, and Javier Coro-
nel. System Impact of Distributed Multicore Sys-
tems. In Data Systems In Aerospace (DASIA), 2012.

[11] The Multicore Association. Multicore
Communications API Working Group.
www.multicore-association.org/
workgroup/mcapi.php. Accessed: 2014-01-
10.

[12] The Multicore Association. Multi-
core Task Management Working Group.
www.multicore-association.org/
workgroup/mtapi.php. Accessed: 2014-01-
10.


