
Work-in-Progress: Strong APA Scheduling in a Real-Time
Operating System

Richi Dubey
Birla Institute of Technology and Science Pilani

Goa, India
f20170099@goa.bits-pilani.ac.in

Vijay Banerjee, Sena Hounsinou, Gedare Bloom
University of Colorado Colorado Springs

Colorado Springs, CO, USA
(vbanerje,shoueto,gbloom)@uccs.edu

ABSTRACT
Arbitrary processor affinities are used in multiprocessor systems to
specify the processors on which a task can be scheduled. However,
affinity constraints can prevent some high priority real-time tasks
from being scheduled, while lower priority tasks execute. This paper
presents an implementation and evaluation of the Strong Arbitrary
Processor Affinity scheduling on a real-time operating system, an
approach that not only respects user-defined affinities, but also
supports migration of a higher priority task to allow execution of a
task limited by affinity constraints. Results show an improvement
in response and turnaround times of higher priority tasks.

CCS CONCEPTS
•Computer systems organization→Real-time operating sys-
tems.

KEYWORDS
RTOS, RTEMS, SMP, APA Scheduling

1 INTRODUCTION
In symmetric multiprocessing (SMP) systems, each processor has
direct access to system resources and is treated as an independent
unit by the operating system (OS). Many OSs using SMP also allow
setting a processor affinity for a task, i.e., the set of processors that
can execute it. Affinity scheduling reduces task migrations and
can result in better performance. However, it can also affect the
system’s schedulability: a task can miss its deadline if all processors
in its affinity set are executing higher priority tasks, even if there
is an idle processor in the affinity set of a higher priority task.

In this work, we present the implementation of an arbitrary
processor affinity (APA) scheduler on the Real-Time Executive
for Multiprocessor Systems (RTEMS) that allows shifting of tasks
without violating original affinity restrictions, thus improving the
response-time and turnaround times for higher priority tasks. RTEMS
is an SMP-supported POSIX-compliant real-time OS that supports
task affinity through its SMP framework from the application layer
using rtems_task_set_affinity() [1]. In contrast, the Priority Affinity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8712-5/21/10. . . $15.00
https://doi.org/10.1145/3477244.3477623

T1

T2

T4

π1

π2

π3

T1

T2

T3

T4

π1

π2

π3

T1

T2

T3

T4

π1

π2

π3

Tk Running Task Tk Ready Task
πk Processor

Scheduled-on Processor Affinities

(a) Initial State at t1 (b) Priority Affinity at t2 (c) Strong APA at t2

(a) Initial State at t1 (b) Priority Affinity (c) Strong APA

Scheduling at t2 Scheduling at t2

Figure 1: Priority Affinity vs. Strong APA Scheduling: At
time 𝑡1 (a), 𝑇1, 𝑇2 and 𝑇4 are assigned to 𝜋1, 𝜋2, and 𝜋3 respec-
tively. (b) Weak APA: 𝑇3 is blocked by 𝑇1 executing on 𝜋1. (c)
Strong APA: 𝑇1 migrates to 𝜋3, blocks 𝑇4 and 𝑇3 gets 𝜋1
Scheduler in RTEMS guarantees a task is scheduled on a proces-
sor in its affinity set, but does not migrate higher priority tasks
executing on a processor in the affinity set of a newly arrived task.

Affinity scheduling has multiple use cases such as providing
security against cache side-channel attacks and maintaining cache
locality.Migration allows an arriving task to displace a running task
from its current processor to another processor in its affinity. In
Weak APA, a task cannot be scheduled if all processors in its affinity
are executing higher-priority tasks. Strong APA allows the schedu-
ling of a lower priority task with affinity constraints by dislodging
higher-priority tasks to other processors in their affinity set [2]. In
this work, we consider a system with a set of 𝑛 real-time tasks that
run on a set of𝑚 identical processors Π = {𝜋1, ..., 𝜋𝑚}. Each task𝑇𝑖
(1 ≤ 𝑖 ≤ 𝑛) has a user-defined affinity 𝛼𝑖 ⊆ Π, a scheduler node 𝑁𝑖 ,
and a priority 𝑝𝑟𝑖𝑜𝑖 . Fig. 1 illustrates the difference between Weak
APA and Strong APA scheduling with 𝑛 = 4 and𝑚 = 3. Priorities
are in decreasing order (i.e., 𝑇1 has highest priority). 𝛼1, 𝛼2, 𝛼3 and
𝛼4 are {𝜋1, 𝜋2, 𝜋3}, {𝜋2}, {𝜋1}, and {𝜋3}, respectively. 𝑇1,𝑇2,𝑇4 are
released at time 𝑡1, and 𝑇3 at time 𝑡2 (𝑡2 > 𝑡1).

2 STRONG APA SCHEDULER ON RTEMS
At a task arrival or departure, the Strong APA scheduler uses task
reachability to update the scheduled task set.

Definition 2.1. A minimum reachable unit is a triplet 𝑈 𝑗
𝑖

=<

𝑇𝑖 , 𝜋𝑘 ,𝑇𝑗 > consisting of a source task 𝑇𝑖 , a destination task 𝑇𝑗 ,
and a processor 𝜋𝑘 such that 𝜋𝑘 ∈ 𝛼𝑖 ∩ 𝛼 𝑗 . A task 𝑇𝑗 is called a
reachable task from 𝑇𝑖 , if there exists an ordered reachability set
𝑅𝑖, 𝑗 =

{
𝑈 𝑎
𝑖
,𝑈𝑏

𝑎 ,,𝑈
𝑑
𝑐 ,𝑈

𝑗

𝑑

}
, such that the ordered set |𝑅𝑖, 𝑗 | > 0 and

{𝑎, 𝑏, . . . , 𝑐, 𝑑} ∈ [1, 𝑛].
TaskArrival:When a task𝑇𝑖 arrives, the scheduler finds𝑅𝑖,𝑙𝑜 , such
that ∀𝑈𝑏

𝑎 ∈ 𝑅𝑖,𝑙𝑜 , 𝑇𝑏 is executing on processor 𝜋𝑘 ∈ 𝑈 𝑎
𝑏
, and 𝑇𝑙𝑜 is

the lowest priority scheduled reachable task. The handling of task

https://doi.org/10.1145/3477244.3477623

EMSOFT’21 Companion, October 8–15, 2021, Virtual Event, USA Dubey et al.

Algorithm 1 _Scheduler_strong_APA_Enqueue
Input: 𝑇𝑖 Output: 𝑠𝑡𝑎𝑡

1: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← nil, 𝑓 𝑟𝑜𝑛𝑡 ← 0, 𝑟𝑒𝑎𝑟 ← −1
2: 𝑝𝑟𝑖𝑜𝑙𝑜 ← 𝐻𝐼𝐺𝐻𝐸𝑆𝑇_𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐼𝑁_𝑆𝑌𝑆𝑇𝐸𝑀
3: for 𝜋𝑖 ∈ 𝛼𝑖 do
4: queue[++rear]← 𝜋𝑖 , mark 𝜋𝑖 as visited
5: preempting_node(𝜋𝑖)← 𝑁𝑖

6: while 𝑓 𝑟𝑜𝑛𝑡 ≤ 𝑟𝑒𝑎𝑟 do
7: 𝜋𝑐𝑢𝑟 ← 𝑞𝑢𝑒𝑢𝑒 [𝑓 𝑟𝑜𝑛𝑡 + +], 𝑇𝑐𝑢𝑟 ← Task running on 𝜋𝑐𝑢𝑟
8: if 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 < 𝑝𝑟𝑖𝑜𝑙𝑜 then
9: 𝑝𝑟𝑖𝑜𝑙𝑜 ← 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 , 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑐𝑢𝑟

10: for 𝜋𝑡 ∈ 𝛼𝑐𝑢𝑟 do
11: if 𝑇𝑐𝑢𝑟 ≠ Idle_task and 𝜋𝑡 not visited then
12: 𝑞𝑢𝑒𝑢𝑒 [+ + 𝑟𝑒𝑎𝑟] ← 𝜋𝑡 , mark 𝜋𝑡 as visited
13: 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝜋𝑡) ← 𝑁𝑐𝑢𝑟

14: if (𝑝𝑟𝑖𝑜𝑙𝑜>𝑝𝑟𝑖𝑜𝑖) then 𝑠𝑡𝑎𝑡 ← Add 𝑁𝑖 to Ready Queue
15: else
16: 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡)
17: while 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ≠ 𝑁𝑖 do
18: 𝑛𝑒𝑥𝑡_𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← cpu running 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡

19: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡, 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡)
20: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑛𝑒𝑥𝑡_𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

21: 𝑁𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝑝𝑟𝑒𝑒𝑚𝑝𝑡𝑖𝑛𝑔_𝑛𝑜𝑑𝑒 (𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡)
22: 𝑠𝑡𝑎𝑡 ← Add 𝑁𝑖 to Scheduled Queue

arrival is shown in Alg. 1. If 𝑝𝑟𝑖𝑜𝑙𝑜 < 𝑝𝑟𝑖𝑜𝑖 , the scheduler preempts
𝑇𝑙𝑜 and allocates the processor from the first element of 𝑅𝑖,𝑙𝑜 to𝑇𝑖 by
shifting the tasks along the path based on 𝑅𝑖,𝑙𝑜 . On 𝑇𝑖 ’s arrival, the
scheduler calls _𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑟_𝑠𝑡𝑟𝑜𝑛𝑔_𝐴𝑃𝐴_𝐸𝑛𝑞𝑢𝑒𝑢𝑒 () which main-
tains a queue of processors initialized with 𝛼𝑖 (lines 2 to 5). To find
𝑇𝑙𝑜 , for each processor 𝜋𝑐𝑢𝑟 in the queue, if the task𝑇𝑐𝑢𝑟 running on
𝜋𝑐𝑢𝑟 is the lowest priority task seen so far, then 𝜋𝑐𝑢𝑟 is marked for
preemption. Further, if𝑇𝑐𝑢𝑟 is not the idle task, then each processor
𝜋𝑡 ∈ 𝛼𝑐𝑢𝑟 is inserted to the queue and 𝑁𝑐𝑢𝑟 marked as the preemp-
ting node for 𝜋𝑡 (lines 6 to 13). Once 𝑇𝑙𝑜 is identified, if its priority
is higher than 𝑇𝑖 ’s, then 𝑇𝑖 is enqueued to the ready queue (line 13).
Otherwise 𝑇𝑖 is assigned a processor by backtracking from 𝑇𝑙𝑜 ’s
processor: 𝑐𝑝𝑢_𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 (lines 15 to 21).
Task Departure:When task (𝑇𝑑𝑒𝑝𝑎𝑟𝑡) departs processor (𝜋𝑑𝑒𝑝𝑎𝑟𝑡),
Alg. 2 finds 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 , such that ∀𝑈𝑏

𝑎 ∈ 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 , 𝑇𝑎 is execu-
ting on processor 𝜋𝑘 ∈ 𝑈 𝑎

𝑏
, and 𝑇ℎ𝑖 is the highest priority ready

reachable task. The scheduler schedules 𝑇ℎ𝑖 and allocates a task to
𝜋𝑑𝑒𝑝𝑎𝑟𝑡 by shifting the tasks along the path based on 𝑅𝑑𝑒𝑝𝑎𝑟𝑡,ℎ𝑖 .

A queue of processors is maintained and initialized with 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 .
For each processor 𝜋𝑓 𝑟𝑡 in the queue, the function identifies any task
𝑇𝑐𝑢𝑟 in the system that has 𝜋𝑓 𝑟𝑡 in its affinity. If 𝑇𝑐𝑢𝑟 is scheduled,
then the processor that it is executing on, 𝜋𝑐𝑢𝑟 , is inserted into the
queue. Else, if 𝑇𝑐𝑢𝑟 is the highest priority ready task witnessed so
far, it is marked as (𝑇ℎ𝑖). In both cases, 𝜋𝑓 𝑟𝑡 is marked as the cpu
that 𝑁𝑐𝑢𝑟 would preempt (lines 3 to 10). Once 𝑇ℎ𝑖 is identified, it is
allocated a processor by backtracking through the path from 𝑇ℎ𝑖 to
𝜋𝑑𝑒𝑝𝑎𝑟𝑡 , allocating a task to 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 as well (lines 12 to 17).

Evaluation and Preliminary Results. We evaluated the Strong
APA implementation on QEMU with ARM target realview-pbx-a9.

Algorithm 2 _Scheduler_strong_APA_Schedule_highest_ready
Input: 𝑇𝑑𝑒𝑝𝑎𝑟𝑡 , 𝜋𝑑𝑒𝑝𝑎𝑟𝑡

1: front← 0, rear← 0, 𝑞𝑢𝑒𝑢𝑒 [𝑟𝑒𝑎𝑟] ← 𝜋𝑑𝑒𝑝𝑎𝑟𝑡
2: 𝑝𝑟𝑖𝑜ℎ𝑖 ← 𝐿𝑂𝑊𝐸𝑆𝑇_𝑃𝑅𝐼𝑂𝑅𝐼𝑇𝑌_𝐼𝑁_𝑆𝑌𝑆𝑇𝐸𝑀
3: while front ≤ rear do
4: 𝜋𝑓 𝑟𝑡 ← 𝑞𝑢𝑒𝑢𝑒 [𝑓 𝑟𝑜𝑛𝑡 + +]
5: for each task 𝑇𝑐𝑢𝑟 such that 𝜋𝑓 𝑟𝑡 ∈ 𝛼𝑐𝑢𝑟 do
6: if 𝑇𝑐𝑢𝑟 is scheduled then
7: 𝜋𝑐𝑢𝑟 ← Processor 𝑇𝑐𝑢𝑟 is executing on
8: queue[++rear]← 𝜋𝑐𝑢𝑟 , 𝑁𝑐𝑢𝑟 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑓 𝑟𝑡
9: else if 𝑝𝑟𝑖𝑜𝑐𝑢𝑟 > 𝑝𝑟𝑖𝑜ℎ𝑖 then 𝑝𝑟𝑖𝑜ℎ𝑖 = 𝑝𝑟𝑖𝑜𝑐𝑢𝑟
10: 𝑇ℎ𝑖 ← 𝑇𝑐𝑢𝑟 ; 𝑁𝑐𝑢𝑟 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡 ← 𝜋𝑓 𝑟𝑡

11: 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑁ℎ𝑖 , 𝑐𝑢𝑟_𝑐𝑝𝑢 ← 𝑁𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

12: while 𝑐𝑢𝑟_𝑐𝑝𝑢 ≠ 𝜋𝑑𝑒𝑝𝑎𝑟𝑡 do
13: 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒 ← Node for task scheduled on 𝑐𝑢𝑟_𝑐𝑝𝑢
14: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑢𝑟_𝑐𝑝𝑢, 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒)
15: 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 ← 𝑛𝑒𝑥𝑡_𝑛𝑜𝑑𝑒
16: 𝑐𝑢𝑟_𝑐𝑝𝑢 ← 𝑁𝑐𝑢𝑟_𝑛𝑜𝑑𝑒 .𝑡𝑜_𝑝𝑟𝑒𝑒𝑚𝑝𝑡

17: 𝑃𝑟𝑒𝑒𝑚𝑝𝑡 (𝑐𝑢𝑟_𝑐𝑝𝑢, 𝑐𝑢𝑟_𝑛𝑜𝑑𝑒)

Avg. Response time(in 𝜇s) Avg. Turnaround time(in 𝜇s)
Task PA SAPA PA SAPA
1 141.05 306.95 3086783.75 3230183.83
2 207.95 614.78 3197499.71 3136835.88
3 3088997.91 198.45 6373255.57 3169505.46
4 134.72 325.54 3175646.44 6160782.63
Table 1: Response Time and Turnaround Time

We compared the average response time and average turnaround
time of the tasks under Priority Affinity (PA) and StrongAPA (SAPA)
scheduling. Table 1 shows average times over 100 runs. We note a
stark difference in the response time of𝑇3 due to the fact that𝑇3 was
blocked by 𝑇1 in PA scheduling, while SAPA allowed 𝑇1 to migrate
to 𝜋3, allowing 𝑇3 to execute. Similarly, the average turnaround
time demonstrates that 𝑇3 is scheduled when it arrives with SAPA
scheduling and 𝑇4, which is the lower priority task, was blocked
until 𝑇1 finished its execution.

3 CONCLUSION AND FUTUREWORK
We presented an implementation of Strong APA scheduling on the
RTEMS real-time OS. The evaluation results show that Strong APA
scheduling has lower response and turnaround times for higher
priority tasks. As a next step, we intend to evaluate context switch
overhead due to task migration and the performance of the schedu-
ler over a large task set.

ACKNOWLEDGMENTS
This work is supported by NSF OAC-2001789 and Colorado State
Bill 18-086. We thank Sebastian Huber and the RTEMS community.

REFERENCES
[1] Gedare Bloom, Joel Sherrill, Tingting Hu, and Ivan Cibrario Bertolotti. 2020. Real-

Time Systems Development with RTEMS and Multicore Processors. CRC Press.
https://doi.org/10.1201/9781351255790

[2] Felipe Cerqueira, Arpan Gujarati, and Björn B. Brandenburg. 2014. Linux’s Proces-
sor Affinity API, Refined: Shifting Real-Time Tasks Towards Higher Schedulability.
In 2014 IEEE Real-Time Systems Symposium. 249–259. https://doi.org/10.1109/
RTSS.2014.29

https://doi.org/10.1201/9781351255790
https://doi.org/10.1109/RTSS.2014.29
https://doi.org/10.1109/RTSS.2014.29

	Abstract
	1 Introduction
	2 Strong APA Scheduler on RTEMS
	3 Conclusion and Future Work
	Acknowledgments
	References

