
Detecting and Classifying Self-Deleting Windows
Malware Using Prefetch Files

Adam Duby
United States Military Academy

adam.duby@westpoint.edu

Teryl Taylor
IBM Research

terylt@ibm.com

Gedare Bloom, Yanyan Zhuang
University of Colorado Colorado Springs

{gbloom, yzhuang}@uccs.edu

Abstract—Malware detection and analysis can be a bur-
densome task for incident responders. As such, research has
turned to machine learning to automate malware detection
and malware family classification. Existing work extracts and
engineers static and dynamic features from the malware sample
to train classifiers. Despite promising results, such techniques
assume that the analyst has access to the malware executable file.
Self-deleting malware invalidates this assumption and requires
analysts to find forensic evidence of malware execution for
further analysis. In this paper, we present and evaluate an
approach to detecting malware that executed on a Windows
target and further classify the malware into its associated family
to provide semantic insight. Specifically, we engineer features
from the Windows prefetch file, a filesystem forensic artifact that
archives process information. Results show that it is possible to
detect the malicious artifact with 99% accuracy; furthermore,
classifying the malware into a fine-grained family has compara-
ble performance to techniques that require access to the original
executable. We also provide a thorough security discussion of
the proposed approach against adversarial diversity.

Index Terms—Malware analysis, forensics, malware classifi-
cation, prefetch

I. INTRODUCTION

Malware analysis is an integral aspect of incident response.
Security analysts need to quickly identify the extent of
damage done by malware to inform mitigation and prioritize
defensive efforts. Two important initial steps in this identifica-
tion process are (1) to detect evidence of malware execution,
and (2) to classify detected malware into descriptive families.
Rapid and accurate detection and classification are vital to
limiting the damage and recovering from an attack.

The tools used by analysts to automatically detect and
classify malware are based largely on machine learning
techniques. To detect malware, the machine learning algo-
rithms will learn models of benign software and malware.
The selection and availability of features are vital to the
effective use of these automation tools. Such features include
information extracted from static binary executable files [38],

This work is supported in part by NSF grants OAC-2115134, OAC-
1920462, OAC-2001789, CNS-2046705, and Colorado State Bill 18-086. The
views expressed in this paper are those of the authors and do not reflect the
official policy or position of the United States Military Academy, the United
States Army, the Department of Defense, or the United States Government.

[39] and from the dynamic behavior of malware/software
execution [27].

Unfortunately, most existing research in malware classi-
fication assumes that the malware sample is available for
analysis. This is often not the case. For example, advanced
persistent threat (APT) groups are known to conduct targeted
campaigns and then self-delete the deployed malware (along
with the usual activity of cleaning up log files, etc.)1. Self-
deletion requires analysts to identify residual artifacts left
behind by the malicious activity [13], such as network logs
on uninfected machines and routers [34] or memory and
filesystem forensic data left behind on a host [9], [20].
Identification and evaluation of the efficacy of such forensic
feature sets in malware detection and family classification is
an open problem [37].

In this paper, we describe an approach to detect evidence
of malware execution post attack, and then perform malware
family classification on the suspected malware without as-
suming access to the original malware sample. The value of
malware family classification is that it informs analysts on
the behavior of the malware. As such, knowing the family
improves the effectiveness of incident response.

We utilize Windows prefetch files to engineer features that
are resilient to malware self-deletion. The Windows operating
system (OS) creates prefetch files when it loads and executes
a program in order to cache the locations of the program’s ref-
erenced files, such as its dynamically linked libraries (DLLs),
so that future program loading is faster. Inspired by use of
prefetch files as residual artifacts in digital forensics [9], we
extract a prefetch feature set for each process by comprising
the set of references from the process’s respective prefetch
file to detect and classify malware. Prefetch files are available
by default on Windows systems. Thus, our approach requires
minimal effort for analysts to use. We engineer the features
to reduce susceptibility to overfitting and concept drift (i.e.,
malware evolution), and train a k-nearest-neighbor (kNN)
classifier to detect if a prefetch file is evidence of malware
execution. Then we apply a custom classifier based on Jaccard
similarity between sets to classify the suspected malware into
its closest family.

Classifying malware into a known family exposes the
malware’s underlying behavior because malware within the

1https://attack.mitre.org/groups/G0016/978-1-6654-8303-2/22/$31.00 ©2022 IEEE

0745

same family share a common subset of semantics. For exam-
ple, classifying a sample as WannaCry ransomware informs
analysts that the sample exhibits behavior representative of
WannaCry, e.g., file encryption and propagation via Server
Message Block vulnerabilities [7]. If a common feature
is removed from this subset, the malware’s semantics are
degraded because it fundamentally changes the behavior of
the malware [29]. This is akin to a monotonic increase
constraint, where the feature set of a variant may increase
(i.e., features added), but the shared features common to the
family cannot be removed due to loss of functionality [15].
We define the enforcement of a minimum feature set in
malware classification as a semantic preservation constraint,
and enforce this constraint in our family classifier.

We evaluate our approach for malware detection and family
classification using prefetch features with a dataset containing
48 malware families and over 4,200 benign files captured from
live production systems. Our detector accurately detected
evidence of malware execution with over 99% accuracy,
and the family classifier achieved results competitive with
other techniques that require full access to the malware and
extraction of more features, such as application programming
interface (API) calls. Finally, we show that the Jaccard
similarity-based family classifier with semantic preservation
constraints provides better performance over an ensemble
machine learning classifier.

This paper makes the following contributions:
• We describe an approach to detect evidence of malware

execution despite malware self-deletion, and classify the
malware into its most probable family;

• We describe an approach to enforce semantic preserva-
tion constraints in the feature set;

• We evaluate our approach and demonstrate improved
performance over state-of-the-art techniques.

The rest of the paper is organized as follows. Section II
explains background knowledge and Section III reviews the
related work. We describe our approach in Section IV and
present the evaluation with experimental results in Section V.
In Section VI we discuss the benefits and limitations of our
approach, and we conclude with Section VII.

II. BACKGROUND

Malware Self-Deletion. Malware can delete itself after
execution to evade detection and thwart analysis. The MITRE
ATT&CK framework defines such behavior as Indicator Re-
moval on Host::File Deletion (T1070.004)2. We queried the
ATT&CK repository and found that 29.8% of threat actors
and 33.7% of malware campaigns have utilized self-deletion
tactics. As such, our research focuses on malware analysis to
inform incident responders who lack access to the original
executable file.

Prefetch Files. On Windows, when a process loads and
for the first ten seconds that it executes, the OS monitors
file references that are made (e.g., loaded DLLs, subprocess

2https://attack.mitre.org/techniques/T1070/004/

execution, language/font files) and maps the full path of
those references into the application’s respective prefetch file.
Each executed process has its own separate prefetch file, and
each machine can store up to 1024 prefetch files for recent
applications. Subsequent launches of the same application will
load (i.e., prefetch) dependencies from the filesystem into
memory with the process.

Threat Model. Our threat model considers an evasive self-
deleting malware. This constrains analysts to rely exclusively
on digital forensic techniques to (1) hunt for evidence of
malware execution (i.e., malware detection), and (2) classify
the malware into a descriptive family to inform response
efforts.

III. RELATED WORK

Malware classification techniques can be loosely cate-
gorized into two approaches: static and dynamic. A static
approach extracts features from the raw malware file (i.e.,
opcodes). By contrast, a dynamic approach extracts features
during program execution (i.e, API calls). Both approaches
assume the analyst has access to the malware binary.

Static Malware Analysis. Approximate matching [5] tech-
niques, or fuzzy hashing, have been used to estimate similarity
between malware by piece-wise hashing their executable files
and comparing the overlap, like ssdeep [18], sdhash [31], and
tlsh [25]. Unfortunately, fuzzy hashing is highly sensitive to
minor deviations in program syntax [12], [26], [32]. Malware
can obfuscate itself, creating variants that appear wildly
different on the surface while retaining semantic similarity,
rendering fuzzy hashing techniques weak for classification.

Some static techniques extract certain features instead of
processing the entire file. This can include structural file
information [33], [40], information from the file header [39],
or information obtained directly from opcodes [14], [36], [38].
Common approaches leverage dependency-based information
(i.e., libraries) [8], [24]. Similarly, ImpHash is used to create
a digest of a program’s import address table, which can be
used to find samples that import the same libraries [22].
Static features are generally easy to extract from the raw file.
However, static features are severely limited when faced with
packed (i.e, heavily obfuscated) malware [1].

Dynamic Malware Analysis. Executing suspected mal-
ware samples allows collection of dynamic features at runtime
such as API and system calls [2], [6], [27], call graphs [30],
and resource usage [16], [23], [35]. Identifying and extracting
features by running the malware however can be a complex
and resource-intensive task. Dynamic analysis also does not
guarantee complete code coverage, as some malware may
terminate prematurely, thwarting the extraction of a complete
feature set. As with static approaches, dynamic analysis still
requires access to (complete) malware samples.

Digital Forensics Techniques. One way to overcome the
limitation of requiring access to the malware is to use forensic
techniques, which work without an executable program. For
example, memory forensics artifacts extracted from process
memory can be used to cluster similar malware [19], [20].

0746

 Malware Execution

ASSISTANT.EXE-66F03FFB.pf

CALCULATOR.EXE-ECF485C4.pf

CHROME.EXE-CCF9F3F4.pf

CONFIGSECURITYPOLICY.EXE-8E7876E6.pf

CONHOST.EXE-F98A1078.pf

CREDENTIAL.EXE-E9F92FD0.pf

...
 Self-Deletion
 (T1070.004)

Attack Incident Response

Prefetch Files

 Detect Malware

 (Binary Classifier)

 Malware Family
 Classification

 (Multiclass Classifier)

PF File

Fig. 1. Approach overview.

Process memory provides an abundance of information, but
memory extraction is costly in time and space, and it requires
specialized tools and expertise. Forensics also degrade with
time. For example, the OS reclaims and reuses memory after
process termination so memory extraction techniques work
best while the process to analyze is still running. Comple-
mentary to compromised hosts, network forensics techniques
using log and packet analysis [34] or traffic pattern analysis
can detect malware [21]. However, these techniques require
excessive storage (to collect full network traces) and may still
miss malware that have no obvious network presence.

Prefetch Techniques. Alsulami et al. [4] trained a logistic
regression model using features extracted from prefetch files
to detect malware (i.e., binary classification). Prefetch files
have also been used to train a convolutional recurrant neural
network to classify malware into five course-grained type la-
bels: adware, backdoor, trojan, virus, and worm [3]. However,
such type labels are too coarse-grained to provide actionable
threat intelligence for incident response.

In this work, we evaluate our approach under a more
challenging, yet usable, label space of 48 malware families
that represent a breadth of malware functionality. Analysts
can infer malware behaviors and prioritize response efforts
from family labels. Further, we suggest that existing prefetch
techniques are prone to overfitting, which may lead to unreal-
istic performance. As such, we implement a feature selection
pipeline that reduces the features’ disposition to overfitting
and susceptibility to changes over time (e.g, concept drift).
Finally, existing techniques do not guarantee semantic preser-
vation constraints as desired for malware family classifica-
tion [10]. Our approach leverages a set-theoretic technique to
enforce such techniques to reduce mislabeling of instances
that may teeter along a classifier’s decision boundary.

IV. APPROACH

Our approach extracts a novel set of features from the
prefetch files. The technique involves three phases as shown
in Figure 1: (1) feature extraction, selection, and engineering;
(2) malware detection; and (3) malware family classification.

A. Feature Extraction, Selection, and Engineering
After a program is executed, we extract its loaded libraries

from its prefetch file, which form this program’s prefetch

feature set. We apply a selection and normalization process
to remove brittle features based on the following criteria:
vulnerability to concept drift, disposition to overfitting, low
variance and high correlation with other features.

Reducing concept drift. Concept drift is when features in
datasets decay over time due to underlying changes in the
malware [17]. Such drift is observed in loaded libraries, and
consequently in the raw prefetch feature sets. For example, a
program’s bitness (i.e., 32-bit versus 64-bit) can change over
time. Bitness is exposed through the presence of Windows-
on-Windows (WoW) subsystem DLLs (i.e., wow64.dll).
Since this is a consequence of computer architecture and not
representative of the program’s semantics, WoW DLLs are
excluded. We also normalize DLLs that provide a version
control numbering convention in their names.

Overfitting avoidance. Overfitting can occur when a
dataset contains features that leak the target class at training
time [41] or when features can be uniquely associated with
the target class. We remove such sources of leakage and
overfitting from our feature set. For example, we do not
consider executable names as part of our analysis even though
they are present in prefetch files. This is because malware
authors can easily change the names to arbitrary strings.
Furthermore, malware families can also drop custom DLLs
and EXEs, which can also lead to overfitting. Finally, we
ignore features in both the malware and benign datasets
that make use of locally (or globally) unique identifiers
(LUID/GUID). These values can change between machines,
and models may overvalue the importance of such features
if the training data was generated from instances running on
the same machine.

Identifying features of little information. Features that
are present in almost every prefetch file were removed since
they do not aid classifiers in discerning between labels. Exam-
ples include ntdll.dll and kernel32.dll. Similarly,
we remove redundant features that have a pairwise Pearson
correlation coefficient greater than 0.95. When a process loads
a DLL, the OS loader recursively walks the dependency
chain to load the DLL’s dependencies. Consequently, DLLs
with dependencies on other DLLs create clusters of highly
correlated features (e.g., zlib.dll and zlibwapi.dll).

Dimensionality reduction. The feature selection and engi-

0747

neering pipeline presented above reduced feature dimension-
ality from 4,321 unique features (i.e., references) down to
1,381 across our entire dataset. The final per-process feature
set is represented as an unordered set, or a bag-of-words
(BoW), of the references made by a process and is used to
train our malware detector and family classifier.

B. Malware Detection

The malware detector identifies which process’ prefetch
file contains evidence of malicious behavior. To do so, we
train a k-nearest-neighbor (kNN) model using the Jaccard
distance metric and k = 5. Each machine stores up to 1,024
prefetch files that are each associated with the system’s most
recent 1,024 processes. To distinguish which prefetch file(s)
are indicative of malware, the processed features are extracted
from each prefetch file and they are clustered against our
labeled dataset of malware and benign software. The 5 closest
software instances dictate the file’s membership (malware
or benign) based on a majority vote. Indeed, prefetch files
themselves are not malware, but our approach detects the
execution of a malware process based on the forensic evidence
left by each process’s prefetch file.

C. Malware Family Classification

Now that the malicious process’s prefetch file has been
identified, we use its prefetch feature set to classify the mal-
ware into a known malware family. The features learned from
the malware dataset are used to compute a similarity metric
that extends Jaccard similarity (JS) to guarantee semantic
preservation, described as follows.

We ensure semantic preservation by finding the minimum
feature set for each family, which is the intersection of
all prefetch feature sets of malware in the same family.
This minimum feature set follows the intuition that each
malware variant within a family share a common subset of
behaviors. By guaranteeing the minimum feature set is met
before computing similarity, we enforce the assumption that
removing core features degrades program semantics.

Let Y be the set of malware families. For each malware
family y ∈ Y , we find three signatures: the minimum feature
set (ymin =

⋂n
i=1 yi, where n is the number of malware

samples in y), the union of all features (ymax =
⋃n

i=1 yi),
and the symmetric difference of the two (ymin4ymax).

If x is the set of features from an unknown malware
instance, we first verify if x is a proper superset of ymin.
If not, we disregard y as a prospective family because it vio-
lates semantic preservation. We also check if the symmetric
difference between x and ymin is a subset of the symmetric
difference of ymin and ymax. If not, we disregard y because
the feature set of x contains features not representative of the
variance of family y.

This approach yields a set Z of prospective families where
|Z| < |Y |, filtering the search space for malware family
classification. From Z, the family with the highest average
pairwise Jaccard similarity with the unknown malware sample

is predicted to be the family. The process is described in
Equation 1.

S(x, y) =

|x ∩ y|
|x ∪ y|

if (x ⊃
⋂n

i=1 yi) and

(x4
⋂n

i=1 yi) ⊂
(
⋂n

i=1 yi4
⋃n

i=1 yi);

0 otherwise.

(1)

V. EVALUATION

In this section, we first describe the dataset (Section V-A),
then present our experimental design and results (Sec-
tion V-B).

A. Dataset

Our dataset contains 4,442 prefetch files representing 4,442
unique malware process executions collected from 48 mal-
ware families executed in a sandbox hypervisor, and 4,296
presumed benign prefetch files collected from twenty Win-
dows computers in a university computer lab. Benign appli-
cations collected include common Microsoft Office products,
text editors, web browsers, and various integrated develop-
ment environments (IDEs). The malware families capture
a variety of malware behavior, including cyber espionage
(Duqu 2.0), proxy-enabling click fraud (Nodersok), and self-
propagating worms that install backdoors (EternalRocks). We
executed each malware in a Windows 10 virtual machine and
extracted their respective prefetch feature sets as described in
Section IV-A.

To ensure our features are not products of their environment
and will scale to a deployed environment, we examined a
subset of the benign applications in the sandbox. After filter-
ing and processing the features as described in Section IV-A,
we observed no difference in features produced in production
from those produced in the hypervisor.

B. Experiments and Results

We present in the following the experimental design and
results for malware detection and family classification. Each
test of the malware detector (Section IV-B) either produces
a true positive tp (malware is correctly classified), a true
negative tn (benign software is correctly classified), a false
positive (fp) error (misclassifies benign software as malware),
or a false negative (fn) error (misclassifies malware as benign
software). Our detector results are expressed in terms of false
positive rate (FPR), true positive rate (TPR), and accuracy.
Precision measures the quality or exactness of the approach,
and is calculated as p =

tp
tp+fp

. Recall measures the sen-
sitivity and completeness of the approach, and is calculated
as r =

tp
tp+fn

. The F-Score combines precision and recall
by taking their harmonic mean such that F = 2∗p∗r

p+r . The
malware classifier results are presented in terms of F-Score
and compared to related classification approaches.

0748

1) Malware Detection: For malware detection, both the
malicious and benign data was leveraged. However, the dis-
tribution of classes in our dataset is not representative of
the real-world, posing a risk of spatial bias [28] in results
if the distribution is not corrected. Assuming there was one
malware incident per machine at any given time, the expected
ratio of malware to benign software is 1 to 1023 respectively,
since Windows stores up to 1024 prefetch files. Therefore,
we oversample the majority class (benign software) to create
a distribution representative of expected real-world scenarios.
Then we ran our kNN detector over the modified dataset using
a stratified 10-fold cross-validation. Our results are compared
with a logistic regression (LR) detector from prior work [4]
that uses our feature set.

As shown in Table I, kNN provides improved false positive
rates and false negative rates over LR. We also compare these
models to a base model: after oversampling the majority class
to meet the approximate 1:1023 distribution representative of
the real world, the base model simply classifies all samples
as benign and still achieves near perfect accuracy due to the
infrequency of the malware class. However, this comes with a
high false negative rate and zero recall for malware. Although
our proposed model’s accuracy is less than that of the base
model, our goal is to detect the minority class malware, i.e.,
to reduce the false negative rate and increase the recall. As
shown in Table I, our goal was attained.

2) Family Classification: For malware family classifica-
tion, we used two different splits in the malware portion of
the dataset: a random split, and a temporal split. The random
split selected 75% of the data for training, and 25% for testing.
The temporal split was based on compile timestamps such that
only the testing set contains the more recent variants from
each family. Comparing the splits allows us to evaluate our
approach for temporal bias [28], where a classifier is leaked
future knowledge during training. The random testing split
was used to find the ymin and ymax sets for each family’s
semantic preservation constraints. Then we ran our family
classifier from Section IV-C and compare the results with
three alternative approaches: fuzzy hashing, machine learning
with common dynamic features, and an ensemble machine
learning classifier using our prefetch features. The results are
shown in Table II.

Fuzzy Hashing. Our family classifier outperformed whole-
file fuzzy hashing techniques that require access to the mal-
ware executable. Specifically, it provides a significant boost in
recall. This is consistent with observations in related work that
demonstrate how common fuzzy hashing techniques struggle
with recalling variants where the underlying file syntax and
structure are diverse [26]. The prefetch feature set is agnostic
of the underlying syntax and low-level details of the malware,
improving robustness in recall.

Machine Learning Techniques. We also compare our
family classification approach to machine learning techniques
that leverage rich dynamic features. To perform such compar-
isons, we extracted API calls and memory-mapped files from

TABLE I
MALWARE DETECTION RESULTS (FPR: FALSE POSITIVE RATE;

FNR: FALSE NEGATIVE RATE).

Model Accuracy % FPR FNR Recall
kNN 99.92 ± 0.05 0.0005 0 0.98
LR 97.60 ± 0.31 0.02379 0.00057 0.97
Base 99.99 0 1 0

malware by executing the samples in a Cuckoo sandbox3.
The features were then used to train an ensemble classifier
that uses kNN and random forests. As shown in Table II,
machine learning classifiers with access to these rich feature
sets do provide improved performance over the prefetching
approach. However, our approach is more flexible, and can
be used with or without a malware sample, making it an ideal
forensic tool.

Ensemble Classifier. Finally, we evaluate the prefetch
feature sets’ use in an ensemble machine learning classifier
that uses kNN and random forests. Our approach from Sec-
tion IV-C provides a slight performance boost over an ensem-
ble machine learning classifier. In addition to a performance
hit, the machine learning classifier does not guarantee seman-
tic preservation. Further, a machine learning approach requires
additional feature preprocessing to vectorize the feature space,
and additional overhead in extending the training dataset.
If a new family is added to a dataset, the approach from
Equation 1 only needs to calculate a few simple set operations
to obtain ymin, ymax, and the symmetric difference of the
two. By contrast, the machine learning classifier requires
retraining the entire model, which is time consuming.

VI. SECURITY DISCUSSION

The attack surface of our approach was analyzed by
surveying common linking methods and manually inspecting
their influence on prefetch files. Our analysis provides critical
insight into feature robustness, i.e., resilience to feature pertur-
bation. Adversarial malware interferes with classification by
perturbing the features [29]. For the prefetch feature set, such
perturbation is achieved by adding or removing file references.
Adversarial attacks must be realizable while preserving the
desired semantics of the malware. As such, attackers cannot
trivially remove file references from the malware, as it may
break functionality. An adversary must exploit the actual
feature extraction process, i.e., the attack must manipulate
how the malware loads libraries to avoid their archival in the
prefetch file. The results are summarized in Table III.

Implicit and Explicit Linking. Loaded libraries (i.e,
DLLs) can be linked and loaded at load time or run time.
Load time is when the OS reads an executable from disk and
allocates memory. Run time is process execution. Implicitly
linked DLLs are dynamically loaded at process load time,
whereas explicitly linked DLLs are linked at runtime. Since
the prefetch service monitors loads made by each process at

3https://github.com/cuckoosandbox

0749

TABLE II
CLASSIFICATION RESULTS.

Technique Feature Feature Representation Algorithm F-Score

Fuzzy Hashing (Static)

Import Address Table (IAT) ImpHash [22] Pairwise Comparison .30
Whole File Piecewise File Chunks ssdeep [18] .49
Whole File Byte Stream TLSH [25] .36
Whole File Piecewise File Chunks sdhash [31] .44

Machine Learning
Classifiers (Dynamic)

API Calls Dummy Encoded Ensemble Classifier .81
API Calls Bag of Words Ensemble Classifier .85
Memory-Mapped Files Dummy Encoded Ensemble Classifier .78

Our Approach Prefetch Feature Set Dummy Encoded Ensemble Classifier .80
Prefetch Feature Set Set Equation 1 (Section IV) .82

TABLE III
ATTACK SURFACE.

Linking Method Feature Capture
Implicit Linking 3
Explicit Linking 3
Compiler Delay Load 3
Explicit Delay Load > 10 sec 7
Reflective Load 7

load time and during the first ten seconds of run time, implic-
itly linked DLLs and explicitly linked DLLs are captured in
the prefetch file, as shown in the first two rows of Table III.

Delay and Reflective Loading. Delay loading implicitly
links DLLs at run time instead of load time and can be
implemented via certain compiler flags4 (compiler delay
load), or manually by the programmer (explicit delay load).
Compiler delay loaded DLLs remain in a program’s import
address table and are therefore captured in the prefetch file.
However, explicit delay loading that occurs after the ten
second monitoring period are neglected from the prefetch
file. As a result, adversary can artificially force a delay in
an explicit load, e.g., using a Sleep() function before
the explicit load. This is a limitation inherit in the design
of the prefetch service. The Windows OS could make the
LoadLibrary() record library loads to the prefetch file,
mitigating this design constraint.

Attackers can also bypass the OS’s native loader through
reflective DLL loading [11]. The DLL is copied into memory,
and a custom minimal reflective loader loads the library,
bypassing the OS’s normal data structures that register loaded
libraries. Therefore, reflectively loaded DLLs bypass the
prefetch file. However, Windows Defender alerts on reflective
loading by monitoring for irregular memory mapped sections.
This deters adversaries from pursuing such approaches.

Miscellaneous. An attacker could also disable the prefetch-
ing capability on the system. The Windows Superfetch service
enables prefetching for applications, and it can be disabled
by setting the PrefetchParameters key in the Memory
Management registry to zero. Defenders can alert on such
activity to deter this technique.

4Visual Studio supports delay loading via the \DELAYLOAD linker option.

Attackers can link and load superfluous DLLs to the
malware process, but this inherits some risks to the malware’s
functionality. For example, the attacker must assume that the
superflous DLLs reside on the target machine. A failure to
load a DLL at process load time can disrupt the malware’s
intended capabilities. As discussed earlier, it is not trivial for
adversaries to perturb the feature set through subtraction. In-
stead, adding noise is a more realizable adversarial approach.
We leave this research for future work.

Although we identified several attack vectors for adver-
saries to perturb the features, we did not observe such
activity pervasively in our dataset. Specifically, we observed
that 1.8% of instances have DLLs in process memory that
are not resident in the prefetch file. Therefore, the prefetch
feature set provides a reasonable approximation of a process’s
dependencies.

VII. CONCLUSIONS

This work introduces an approach for improving Windows
incident response and triage of malware-compromised ma-
chines based on prefetch files that can be recovered forensi-
cally even after the malware itself is deleted and unavailable.
Our approach leverages library dependencies generated by the
OS loader as features to build both a malware detector and
family classifier. Experimental results show that using these
features derived without direct access to malware samples
can achieve comparable classifier performance as state-of-the-
art machine learning classifiers that do require the malware
sample.

REFERENCES

[1] H. Aghakhani, F. Gritti, F. Mecca, M. Lindorfer, S. Ortolani,
D. Balzarotti, G. Vigna, and C. Kruegel. When malware is packin’heat;
limits of machine learning classifiers based on static analysis features.
In 27th Network and Distributed Systems Security (NDSS) Symposium,
2020.

[2] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari. Malware detection
by behavioural sequential patterns. Computer Fraud & Security, 2013.

[3] B. Alsulami and S. Mancoridis. Behavioral malware classification using
convolutional recurrent neural networks. In 13th IEEE International
Conference on Malicious and Unwanted Software (MALWARE), 2018.

[4] B. Alsulami, A. Srinivasan, H. Dong, and S. Mancoridis. Lightweight
behavioral malware detection for windows platforms. In 12th IEEE
International Conference on Malicious and Unwanted Software (MAL-
WARE), 2017.

0750

[5] F. Breitinger, B. Guttman, M. McCarrin, V. Roussev, and D. White.
Approximate matching: definition and terminology. Technical Report
NIST SP 800-168, National Institute of Standards and Technology, May
2014.

[6] R. Canzanese, S. Mancoridis, and M. Kam. Run-time classification
of malicious processes using system call analysis. In 10th IEEE
Conference on Malicious and Unwanted Software (MALWARE), 2015.

[7] Q. Chen and R. A. Bridges. Automated behavioral analysis of malware:
A case study of wannacry ransomware. In 16th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2017.

[8] J. Choi, Y. Han, S.-j. Cho, H. Yoo, J. Woo, M. Park, Y. Song, and
L. Chung. A Static Birthmark for MS Windows Applications Using
Import Address Table. In 7th International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), 2013.

[9] A. Dimitriadis, N. Ivezic, B. Kulvatunyou, and I. Mavridis. D4i-digital
forensics framework for reviewing and investigating cyber attacks.
Array, 2020.

[10] A. Duby, T. Taylor, and Y. Zhuang. Malware family classification via
residual prefetch artifacts. In 19th IEEE Annual Consumer Communi-
cations & Networking Conference (CCNC), 2022.

[11] S. Fewer. Reflective dll injection. 2012. URl: https://github.
com/stephenfewer/ReflectiveDLLInjection.

[12] V. Harichandran, F. Breitinger, and I. Baggili. Bytewise Approximate
Matching: The Good, The Bad, and The Unknown. Journal of Digital
Forensics, Security and Law, 2016.

[13] V. S. Harichandran, D. Walnycky, I. Baggili, and F. Breitinger. Cufa:
A more formal definition for digital forensic artifacts. Digital Investi-
gation, 2016.

[14] M. Hassen, M. M. Carvalho, and P. K. Chan. Malware classification
using static analysis based features. In 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), 2017.

[15] Í. Íncer Romeo, M. Theodorides, S. Afroz, and D. Wagner. Adver-
sarially robust malware detection using monotonic classification. In
4th ACM International Workshop on Security and Privacy Analytics
(IWSPA), 2018.

[16] C. Jindal, C. Salls, H. Aghakhani, K. Long, C. Kruegel, and G. Vigna.
Neurlux: dynamic malware analysis without feature engineering. In
35th ACM Annual Computer Security Applications Conference (AC-
SAC), 2019.

[17] R. Jordaney, K. Sharad, S. K. Dash, Z. Wang, D. Papini, I. Nouretdinov,
and L. Cavallaro. Transcend: Detecting concept drift in malware
classification models. In 26th USENIX Security Symposium, 2017.

[18] J. Kornblum. Identifying almost identical files using context triggered
piecewise hashing. In 6th Annual Digital Forensic Research Workshop
(DFRWS), 2006.

[19] M. A. Kumara and C. Jaidhar. Leveraging virtual machine introspection
with memory forensics to detect and characterize unknown malware
using machine learning techniques at hypervisor. Digital Investigation,
2017.

[20] A. H. Lashkari, B. Li, T. L. Carrier, and G. Kaur. Volmemlyzer: Volatile
memory analyzer for malware classification using feature engineering.
In Reconciling Data Analytics, Automation, Privacy, and Security: A
Big Data Challenge (RDAAPS). IEEE, 2021.

[21] K. Makhlouf. Finding a needle in a haystack: The traffic analysis
version. Proceedings on Privacy Enhancing Technologies, 2019.

[22] Mandiant. Tracking Malware with Import Hashing, 2014.
https://www.fireeye.com/blog/threat-research/2014/01/tracking-
malware-import-hashing.html.

[27] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas.
Malware classification with recurrent networks. In 2015 IEEE In-

[23] R. Mosli, R. Li, B. Yuan, and Y. Pan. A behavior-based approach
for malware detection. In IFIP International Conference on Digital
Forensics. Springer, 2017.

[24] M. Narouei, M. Ahmadi, G. Giacinto, H. Takabi, and A. Sami.
DLLMiner: Structural mining for malware detection. Security and
Communication Networks, 2015.

[25] J. Oliver, C. Cheng, and Y. Chen. TLSH–a locality sensitive hash. In
4th IEEE Annual Cybercrime and Trustworthy Computing Workshop
(CTC), 2013.

[26] F. Pagani, M. Dell’Amico, and D. Balzarotti. Beyond precision and
recall: Understanding uses (and misuses) of similarity hashes in binary
analysis. In 8th ACM Conference on Data and Application Security
and Privacy (CODASPY), 2018.
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015.

[28] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
TESSERACT: Eliminating experimental bias in malware classification
across space and time. In 28th USENIX Security Symposium, 2019.

[29] F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro. Intriguing
properties of adversarial ml attacks in the problem space. In 41st IEEE
Symposium on Security and Privacy (S&P), 2020.

[30] C. Puodzius, O. Zendra, A. Heuser, and L. Noureddine. Accurate and
robust malware analysis through similarity of external calls dependency
graphs (ecdg). In 16th International Conference on Availability,
Reliability and Security. IEEE, 2021.

[31] V. Roussev. Data fingerprinting with similarity digests. In IFIP
International Conference on Digital Forensics. Springer, 2010.

[32] N. Sarantinos, C. Benzaid, O. Arabiat, and A. Al-Nemrat. Forensic
Malware Analysis: The Value of Fuzzy Hashing Algorithms in Identi-
fying Similarities. In 2016 IEEE Trustcom/BigDataSE/ISPA, 2016.

[33] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq. PE-Miner: Mining
structural information to detect malicious executables in realtime. In
Recent Advances in Intrusion Detection (RAID), 2009.

[34] L. F. Sikos. Packet analysis for network forensics: A comprehensive
survey. Forensic Science International: Digital Investigation, 2020.

[35] J. Stiborek, T. Pevnỳ, and M. Rehák. Multiple instance learning for
malware classification. Expert Systems with Applications, 2018.

[36] Z. Sun, Z. Rao, J. Chen, R. Xu, D. He, H. Yang, and J. Liu. An
opcode sequences analysis method for unknown malware detection. In
2nd International Conference on Geoinformatics and Data Analysis,
2019.

[37] D. Ucci, L. Aniello, and R. Baldoni. Survey of machine learning
techniques for malware analysis. Computers & Security, 2019.

[38] J. Upchurch and X. Zhou. Malware provenance: Code reuse detection
in malicious software at scale. In 11th IEEE Conference on Malicious
and Unwanted Software (MALWARE), 2016.

[39] G. D. Webster, B. Kolosnjaji, C. von Pentz, J. Kirsch, Z. D. Hanif,
A. Zarras, and C. Eckert. Finding the Needle: A Study of the PE32
Rich Header and Respective Malware Triage. In Detection of Intrusions
and Malware, and Vulnerability Assessment (DIMVA). 2017.

[40] G. Wicherski. peHash: A novel approach to fast malware clustering.
2nd USENIX Workshop on Large-Scale Exploits and Emergent Threats
(LEET), 2009.

[41] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha. Privacy risk in
machine learning: Analyzing the connection to overfitting. In 31st IEEE
Computer Security Foundations Symposium (CSF), 2018.

0751

