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Abstract—Machine learning approaches to classify malware
by family save analysts valuable time during incident response.
A key challenge for these approaches is selecting features that
are robust against concept drift, which describes the change
in malware over time. In this paper, we evaluate a dynamic
feature set based on Windows handles (e.g., files, registry keys)
for malware family classification. Specifically, we examine the
features’ vulnerabilities and evaluate their robustness against
concept drift. We curated a novel dataset that simulates the
manipulations that attackers may invoke on malware samples. We
demonstrate improved robustness to concept drift over traditional
API call-based features by training machine learning classifiers on
malware collected in the wild, and testing the classifiers against
samples that underwent manipulations. Further, we investigate
time decay due to concept drift using temporally consistent
evaluations that do not assume access to newer information. The
evaluation shows that our features are robust against malware
obfuscation. Furthermore, we empirically demonstrate how mal-
ware labeling conventions (malware type or family) can affect
results, and make recommendations for dataset construction.

Keywords—Malware analysis, forensics, malware classification

I. INTRODUCTION

Malware classification research has shown promising re-
sults, with some approaches demonstrating near perfect ac-
curacy [14], [21]. Such results may suggest that the problem
is largely solved. However, temporal experimental bias [31]
can inflate the performance metrics. Temporal experimental
bias is introduced when experiments assume the distribution
of features at test-time and train-time are the same; this
assumption does not hold when the features change over
time due to concept drift [20]. Concept drift occurs when
the statistical relationship between input features and output
labels change, decaying classifier performance. In software,
concept drift can occur naturally because of version changes
in code or operating systems that in turn affect input features
for classification algorithms. For example, the shift from 32-
bit to 64-bit executables changed program features despite
the programs being semantically equivalent. Concept drift can
also be intentionally induced by an adversary to thwart a
classifier [16]. We refer to such drift as adversarial drift [22].
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expressed in this paper are those of the authors and do not reflect the official
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Army, the Department of Defense, or the United States Government.

Many studies neglect the influence of adversarial drift,
which often comes in the form of program/machine code
obfuscation [1]. Heavy obfuscation, such as packing, is highly
transformative, making it a challenging adversarial case study.
Packing is also a realistic and prevalent problem, as it is
estimated that about 80% of the malware in the wild is
packed [29]. Packing also provides reusability, affording at-
tackers a means to create new malware from existing samples.
In this paper, we explore the robustness of dynamic features for
Windows malware classification on a large real-world malware
dataset of 27 malware families. To evaluate robustness against
concept drift, we compare the performance of a temporally
biased dataset with one that removes temporal bias by ensuring
temporal consistency in the training and testing data. By
leveraging compile timestamps, we train our classifier on older
malware, and test on more recent malware to capture the
time decay. To further evaluate robustness against packing,
we augment the dataset with packed malware to simulate
adversarial drift.

We present and analyze two sets of dynamic features
with an emphasis on robustness: process handle counts by
type, and named memory-mapped files. Handles are references
to resources, such as files, events, and registry keys that
are made by a process; memory-mapped files are known as
section objects, most of which are dynamically loaded libraries
(DLLs). We present a dynamic feature extraction process to
provide additional robustness for capturing DLLs that could
otherwise be hidden through stealthy techniques, such as
import obfuscation. Results show that our proposed features
offer improved robustness against concept drift over state-
of-the-art dynamic feature sets. Further, unlike past studies
that used adversarial training and retraining to boost classifier
performance, we found that such training had a negligible
impact on our classifier. This suggests that robust feature sets
reduce the need for retraining.

In addition to temporal bias, the ease of distinguishability
of malware labels in popular datasets may further inflate
reported performance metrics [43]. For example, the label
‘botnet’ loosely classifies the malware based on its type labels
and provides little valuable intelligence for a defender. By
contrast, a family label, such as ‘Zeus’, informs the de-
fender about the malware’s specific tactics, techniques, and
procedures. Although family labeling increases classification
difficulty because families are more fine-grained and harder to
distinguish, families improve classifier utility. We demonstrate
the impact labeling can have on malware classification. Indeed,
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whether malware is labeled based on family or type can have
a huge effect on performance. In response, we provide a set
of recommendations around labeling practices for future work,
and discuss techniques for building datasets for analysis.

In this paper, we make the following contributions:

• We present an in-depth feature analysis of dynamic
features based on handle references.

• We show that handle-based features are more robust
to concept drift in general over state-of-the-art API-
based feature sets.

• We highlight how the choice of labeling malware
datasets can drastically affect classification perfor-
mance, and make recommendations around labeling
conventions for future studies.

II. BACKGROUND AND RELATED WORK

This paper focuses on feature analysis and labeling for a
machine learning-based malware classifier trained with a set of
malware samples. The machine learning input is in the form
of feature vectors, extracted from malware samples, and the
labels are known ground truth class associations. We denote
this classifier as f : X → Y , where X is the malware feature
space and Y is the label space. Once trained and deployed,
given a feature vector x ∈ X , the classifier returns a predicted
label, f(x) = y, where y ∈ Y . Let M represent the sample
space of raw malware files (i.e, PE32 files in Windows). For
each m ∈M , a feature extraction and selection function yields
the feature vectors, φ(m) = x. While feature extraction pulls
features from m, feature selection is the process of choosing
which extracted features to include in x.

A. Malware Labeling

Machine learning has been applied to the malware domain
to tackle two major problems: malware detection and malware
classification. Malware detection is a binary classification to
detect malicious software [15]. In this case, the label space
is simply Y ={benign,malicious}. By contrast, the
multiclass malware classification problem assumes the input
software is malware and predicts the type or family member-
ship of m. Related work has not clearly defined the labeling
terminology malware type and malware family; however, the
distinction between labeling schemes is extremely important,
and can have an impact on classification performance.

A malware type is a high-level description of the general
functionality of the malware. Example labels of malware types
include worm, trojan, ransomware, and spyware. By contrast,
a malware family describes a grouping of malware that utilizes
similar low-level primitives or a similar code base to achieve
similar effects. While a type describes the overall effect, a
family categorization represents how the effects are achieved.
A family can describe widely available commodity malware
(e.g., Papras, Delf), or proprietary malware deployed in an
intrusion set campaign (e.g., BlackEnergy).

The disadvantage of type labels is that they do not expose
the information that analysts can use to reason about the attack
for follow-on defensive operations, such as threat attribution,
hunting for additional indicators, and performing damage

assessments. For example, type classification as a backdoor
still requires that an analyst manually reverse engineer the
malware to find related network traffic and follow-on adversary
activity. If the malware was classified into a more granular
family name, such as NewsReels (an instance of a backdoor),
then the analysts can immediately start hunting for malicious
HTTP traffic indicative of this malware family.

Once a label space Y that meets the problem’s objective
is defined, one must determine the appropriate features X
and algorithm. Possible algorithms include random forests,
k-nearest-neighbors (kNN), support vector machines, and ar-
tificial neural networks. Feature extraction and selection are
more important to a model’s success than the choice of
algorithms [9], [25], so our emphasis is on feature selection.

B. Malware Features

Feature extraction and selection is the process of pulling
observable information from m to produce a feature vector
x as input to a malware classifier. In software, there are two
main approaches for feature extraction: static and dynamic.

Static features are extracted from the program file and do
not require program execution. This can include structural file
information [42], [51], statistical information [3], [6], informa-
tion from the file header [50], or information obtained directly
from opcodes [47], [49]. Other techniques leverage information
from the program’s import table and loaded libraries [6],
[28]. Approaches use more rigorous feature selection based
on information gain to extract a combination of informative
static features [55]. Static features are easy to extract, but
they tend to reason about surface signatures [43]. For example,
static features extracted from packed malware train classifiers
to learn about packing instead of the characteristics of the
malware [1], [26]. As such, these features are not resilient to
adversarial attacks.

Dynamic features are extracted from the runtime analysis
of a program. Related work has proposed API and system
call information as dynamic features [2], [4], [5], [17], [34],
[40]. Despite promising results, attacks against system call and
API based approaches have been shown effective at defeating
classifiers by perturbing the order of calls, invoking additional
calls, and obfuscating the API calls [38], [44]. API calls
can also change over time due to variations in the execution
environment, obfuscation, and version changes in software and
operating systems. For example, between Windows 7 SP0 and
Windows 10 v1809, there have been 69 new native (NT)
APIs introduced, and three removed completely; a cursory
examination of the Win32 documentation reveals that many
Win32 API calls were gradually deprecated.

Behavioral approaches have also been proposed to ap-
proximate the behavior of malware. Research demonstrated the
feasibility of behavioral approaches in malware detection by
using file systems interactions, mutexes, and network resources
as features [19], [24], [33], [45]. Most closely related to our
work, Mosli et al. proposed using handle statistics for malware
detection [27], i.e., binary classification. Our approach expands
on these observations to utilize handles and memory-mapped
file names as features for malware family classification. Fur-
ther, we filter out handles and names that may change over time



or can be easily manipulated by an attacker and we evaluate
these features’ robustness to concept drift.

C. Adversarial Considerations

We are interested in identifying features that are robust to
concept drift. Consider an adversary who wants to re-purpose
an existing malware m. The adversary’s goal is to perturb
the feature space in a manner that forces a misclassification.
Such an attack is realized via some transformation function t
applied against the original malware sample, t :M →M ′. The
challenge for the attacker is developing t such that t(m) = m′

and φ(m) 6= φ(m′) while preserving the original semantics
and desired effects of m.

It may be trivial to conceive transformations that alter the
feature space; however, not all transformations are easily real-
izable. Due to the complex nature of compiled software, it is
difficult to randomly perturb features while preserving desired
semantics [32]. Due to such difficulty, attackers commonly
use packing as an adversarial technique. Packing approximates
many adversarial transformation techniques because it changes
the code layout and obfuscates the import table. Further,
packing changes the PE32 header, which has been shown
to be one of the most discriminative and important features
used in malware classifiers [35]. Packing also alters the API
call sequence by invoking additional API calls to unwrap the
packed executable at process start-up.

Attacks can also easily perturb features based on loaded
libraries [6], [7]. If extraction is performed statically, the
attacker can deceive malware classification through delay
loading libraries, import address table (IAT) obfuscation, and
stealthy loading [23]. These stealthy techniques unlink loaded
libraries in a binary sample, causing related features to be
omitted from the classifier’s input.

The names of operating system resources, such as mutexes
and accessed files, are also popular features for malware
classification [19], [24], [33], [36], [45]. For example, Backoff
malware variants created predictable and stable named mutexes
as part of its infection routines. However, attacks on these
features can be as simple as changing the names of these
resources – e.g., TreasureHunter malware used dynamically
generated mutex names that were not trivial to predict.

In addition to changes induced by the adversary, concept
drift introduces time decay in models whose chosen features
change over time [20]. Recent work proposed time-aware splits
based on malware compile timestamps to create temporally
consistent training and testing windows for malware detec-
tion [31]. They observed a decrease in F1-scores by approxi-
mately 0.20 in malware detection models when retrained and
tested using time-aware splits. As such, they recommend using
robust features that are less likely to deviate over time due to
concept drift and adversarial drift. We use these observations to
incorporate time-aware evaluations against our chosen features
for family classification.

D. Feature Robustness

It is important to select features that are less likely to
change over time and are costly for an attacker to manipu-
late [54]. Several techniques have been proposed to enhance

feature robustness. Xu et. al. suggested feature squeezing to
reduce the attack surface by selecting only features imperative
to the classification task [53]. Identifying features with a strict
monotonic increase constraint also reduces the adversary’s
options to perturb features [18]. A monotonically increasing
feature is one that if removed, the malware will lose its desired
functionality. For example, imports are a monotonically in-
creasing feature set [18]. A removed library reference removes
the malware’s ability to interact with said library; however,
these features are susceptible to import obfuscation, packing
and delay loading.

We desire features that are both monotonically increasing
and unaffected by import obfuscation and packing. Further,
static techniques for transforming malware are relatively low
cost for attackers and they can easily fool classifiers dependent
on a static feature set. By contrast, dynamic features are riskier
for an attacker to manipulate because behavioral changes may
violate semantic preservation [10], [11], [32]. This suggests
that we need an approach based on dynamic features that are
costly for adversaries to remove to attain feature robustness.

E. Dataset Considerations

Existing malware datasets are difficult to reuse because
they are either distributed in non-executable format [37], or
only provide certain features [5], making it challenging to
extract new features from the same malware samples for
comparison. We also desire a hard dataset where malware
classes are not easily distinguishable. Smith et al. [43] discuss
the ease of label distinguishability in malware datasets. We
expand upon their observations and propose the following
criteria for a hard dataset: (i) adopt meaningful labeling
conventions that lead to actionable intelligence; (ii) testing sets
should contain some adversarial transformations to simulate
malware changing over time; (iii) ensure temporal consistency
in the training and testing sets to avoid inflated results.

Some existing datasets favor high classification accuracy
rather than useful malware labels [43]. We suggest this (un-
intentional) bias comes from dirty labels, which are class
labels that are either incorrect or too vague to derive proper
conclusions for a given problem [13]. Extending this concept to
malware analysis, we present several examples of dirty labeling
that may inadvertently lead to reporting of unrealistic results.

First, we consider the Microsoft Malware Classification
Challenge [37] which provides a dataset of nine malware
families and is used heavily in the literature [43]. One class in
the dataset is OBFUSCATOR.ACY and serves as a bucket for
all obfuscated or heavily packed malware. Obfuscated malware
is not a family, and, as such, provides little information for
defenders to pursue follow-on defensive activities. By encapsu-
lating obfuscated malware into one family, the remaining fam-
ilies become easily distinguishable. This over-simplification of
the obfuscation (e.g., packing) problem degrades reliability in
deployed environments, because malware of the same family
can appear as obfuscated variants.

Another example of dirty labeling is the use of anti-
virus detection names as ground truth family labels. Anti-
virus detection names are vendor-specific, and often based on
specific hand-crafted signatures [12], [43]. This approach can
create easily distinguishable classes not representative of the



true complexity of malware family classification. Further, it
has been shown that detection names are unreliable for proper
malware family identification [12], [41]. To demonstrate this,
we took one sample of the Masad Stealer malware and packed
it with UPX1 then ran both samples through 27 anti-virus
engines. We observed different detection names for the two
semantically identical samples. For example, Kaspersky named
the original as Trojan-Spy.Win32.AutoIt.arg, and
the packed version as Trojan-PSW.Win32.Masqulab.b.
If we curated a dataset by pulling all samples that matched the
Trojan-Spy.Win32.AutoIt.arg detection name and
assigned them the same label, we risk missing packed and
obfuscated variants. Therefore, this type of labeling in dataset
construction may inadvertently create class labels that are more
easily distinguishable than what is representative in the real
world. Further, because anti-virus detection names are crafted
by manual signatures, training a classifier with such labels
teaches the classifier to reason about the signatures instead
of reasoning about the malware [43].

III. APPROACH

The goal of our work is to evaluate feature robustness
against concept drift for the malware classification problem.
To do so, we must extract a set of features from malware that
are robust against the attacker’s ability to modify the malware
through manipulation techniques. Specifically, we desire a
small feature set to reduce the attack surface (i.e., feature
squeezing [53]); and our features should meet the monotonic
increase constraint to reduce adversarial options [18]. In this
section, we present our features (Section III-A), dataset (Sec-
tion III-B), and our feature analysis and selection process
(Section III-C).

A. Features

We do not use any static features because of their known
limitations and vulnerabilities to packing [1], [43]. Similarly,
we avoid using most API calls as features because they do not
meet the monotonic increase constraint [18], are vulnerable to
diversification tactics [38], and are subject to concept drift.
Instead, our approach to dynamic feature selection utilizes
handles, which are references to resources that the Windows
kernel exposes to applications. Handle information has been
shown to be effective for malware detection [27] (i.e., bi-
nary classification); however, we focus on malware family
classification; furthermore, to improve robustness we remove
malleable features that can change over time or be easily
modified by the adversary, as described below.

1) Memory-Mapped Files: Given that many Windows re-
source names (e.g., mutexes) can be easily modified by the
attacker, we only identify memory-mapped file names (e.g.,
DLL names) from the pool of named resources as features
due to their stability over time. Although the import of a DLL
can be hidden through import obfuscation, the name of the
file is less prone to attacker manipulation since DLLs are an
integral part of the Windows OS. However, malware can still
hide the import through delay loading. Therefore, we need a
feature extraction method that can detect these hidden DLLs.

1Ultimate Packer for eXecutables: https://github.com/upx/upx

We detect hidden DLLs by monitoring a special Windows
data structure called OBJECT ATTRIBUTES. Stealth load-
ers [23] and reflective loaders hide loaded libraries by avoiding
file mapping and loader APIs. Instead, they use memory
functions like the Windows API call CreateFile to load
their DLLs. CreateFile eventually calls NtCreateFile,
which populates OBJECT ATTRIBUTES with the name of
the memory-mapped file during execution. By monitoring this
structure, we can capture all loaded libraries that reference a
file name, even if they are otherwise hidden from traditional
Windows loader data structures. Furthermore, while packing,
IAT obfuscation, and delay loading are all straightforward
methods to hide an import from the static IAT, these objects
can still be detected dynamically using our approach, as shown
via the experiment results in Section IV.

2) Handle Counts: The other feature set we consider are
handle counts, which we represent as a histogram of the
unique handles a malware process accesses categorized by type
(e.g., mutex, memory-mapped file, etc.). In contrast to related
work [27], our categorizations of handles completely ignore
named objects (except memory-mapped file names) because
they are easy to manipulate; however, keeping the counts
of these objects is important because they approximate the
semantics of the program. Beyond naming, our categorizations
also ignore the order of handle references in the program,
which can be easily manipulated and may vary between
systems.

B. Dataset

In this section, we present our malware dataset and feature
extraction process.

1) Dataset Details: In the pursuit of realistic performance
metrics, our dataset was designed with no ambiguity in the
family labels. We use labeling that associates the malware with
a specific intrusion set malware campaign, or a commodity
malware that has a shared code base with similar properties.
This avoids excessive generalization of the malware family
and exposes the required malware intelligence for defenders to
tailor follow-on defensive activities. Specifically, our malware
corpus contains a total of 1,804 samples from 27 different
malware families. We used a combination of various sources,
such as Variant [48] and Contagio2, to build the corpus and
we verified the ground truth labeling manually.

The malware had many diverse samples within their fam-
ilies. For example, most of the original Bifrose samples were
packed with either aspack or scpack. Several families,
including CookieBag, utilized delay loading, while some
Bredolab samples used a code obfuscation technique which
made some of the code appear as unstructured data; further-
more, many malware samples had varied compiler options and
optimizations including some variants of Masad Stealer, which
were compiled with Nullsoft Scriptable Install System (NSIS)
along with Microsoft Visual C compiler. Finally, malware such
as Tbot and Masad are trojans, with their benign functionality
widely different across samples.

To evaluate features against a realistic adversary, we cre-
ated two sub-datasets: M and M ′. M contains the original

2http://contagiodump.blogspot.com/



Fig. 1. Pairwise Jaccard similarity of memory-mapped files.

1,044 malware samples collected from the wild; M ′ was
generated by packing each m ∈ M with UPX to simu-
late adversarial transformations that may occur at test time.
Because packing sometimes breaks the functionality of the
program, some generated variants did not execute in our test
environment, leaving 1,804 samples of usable malware.

2) Feature Collection: Each malware sample was executed
on a Windows 10 virtual machine for two minutes, or until
process termination, whichever came first. Samples executed
their default code execution paths. Although it is challenging to
guarantee complete code coverage in a dynamic environment,
our results in Section IV-D suggest that the default code
execution paths approximate the malware enough to extract
features sufficient for classification.

We used strace from DynamoRIO to monitor for system
calls that either query or create section objects to capture all
memory-mapped files (DLLs). Furthermore, we incorporated
the handles utility from the SysInternals tool suite [39] to
capture the handle count information. Raw feature vectors X
are represented as integers for the handle counts, and as a
set of strings for memory-mapped files. The integer values
were normalized with a min-max scaler, where xscaled =

x−min(x)
max(x)−min(x) . Strings were vectorized using binary encoding.

C. Feature Analysis and Selection

In this section, we provide insight into the feature analysis
and selection process. We analyze and select features based
on 80% of the original malware from M . The remaining are
omitted to avoid overfitting in the evaluation. Feature analysis
and selection also omits any features extracted from M ′ in
order to fairly evaluate the approach against unseen samples.

1) Memory-Mapped Files: As mentioned in Section III,
we avoid using most object names as features due to their
susceptibility to manipulation (e.g., renaming mutex and file
names). The only names that can provide stability over time
are names of memory-mapped files, which contain DLLs.
When selecting which of the remaining files we use, we first
remove any names that appear prominently across all malware
families. This reduced the number of unique DLLs from 162 to

Feature Utility
TotalHandles

High Information GainEtwRegistrationHandles
NamedMappedFiles
ALPCPorts

Moderate Information Gain

EventHandles
FileHandles
KeyHandles
MutexHandles
ThreadHandles
UnnamedSectionHandles
SemaphoreHandles Low Information Gain
DirectoryHandles
ChildProcesses

Low VarianceDesktopHandles
WindowStationHandles
KeyedEventHandles

High CorrelationTimerHandles
TpWorkerFactoryHandles
IoCompletionHandles

TABLE I: Features from the handle count class. All features
are integer counts of the number of handles. We discarded
the features with low information gain, low variance, and high
correlation.

99. Removed DLLs included ntdll.dll, kernel32.dll,
and kernelbase.dll. All Windows processes map these
DLLs since they are required to interface with the native
API. We manually removed other DLLs that may be subject
to differences between the execution environments. For ex-
ample, Windows-on-Windows (WOW) subsystem DLLs were
removed, which include wow64.dll, wow64win.dll, and
wow64cpu.dll.

We use the pairwise Jaccard Similarity (JS) score between
each sample’s set of remaining memory-mapped files to ex-
amine uniqueness between families and similarities within
families. A high JS score (e.g., close to 1) indicates that there is
a significant feature overlap between two families. Intuitively,
a high JS score within a family but a low one across families
is desired for effective classification. We visualize the mean
pairwise JS scores and the resulting confusion matrix as a
heatmap in Figure 1. Dark spots in the heatmap indicate high
feature overlap.

From the diagonal in Figure 1, we gather that we have
a good feature set. Due to some intra-family variance in the
features, the diagonal is not perfect (i.e., 1.0), with the lowest
intra-family similarity score being 0.55 for family Hupigon.
Hupigon is configurable through an exploit kit software that
can add functionality to meet the attacker’s objectives. This
variation in functionality accounts for the higher variance in
the loaded libraries, thus the lower similarity score. Figure 1
reveals that families GreenCat and NewsReels follow similar
intra-family scores. They are both backdoors with different
communication mechanisms. Interestingly, they are also both
attributed to the same advanced persistent threat (APT1). Other
noticeable patterns include inter-family similarity between
CookieBag, TABMSGSQL, and TARSIP (all are backdoors),
and similarity between Tbot and Clemag (both are trojans that
install backdoors). Despite these feature similarities between
families, the general trend shows high intra-family similarity
scores and low inter-family scores.



2) Handle Counts: The handle counts feature set represents
a histogram of unique resource handles of a particular type. Ta-
ble I shows a complete list of the features we examined. Three
types of handles, ChildProcesses, DesktopHandles,
and Window-Station-Handles, were removed from the
original handles feature set due to low variance. The most
surprising removal was the child process count. Indeed, few
malware samples in our dataset actually created child processes
during analysis. We also calculated the pairwise Spearman rank
correlation coefficient to identify correlated features. We found
that not only did the number of desktop handles and windows
station handles have low variance, they were also linearly
correlated. As a result, these features were not considered.

We also observe a correlation between the number of timers
and keyed events, which are both synchronization objects.
Timers are often used when a thread is waiting to be signaled
at a specific time. Keyed events allow threads to set an event
or wait on some event for synchronization. Upon examining
the system’s behavior, we observe that a timer is associated
with each keyed event to serve as a timeout in case the event
is not released.

There is also a relationship between the number of worker
threads in the system’s thread pool (TpWorkerFactory
threads) and the number of I/O ports. Worker threads execute
asynchronous callbacks on behalf of the running process, while
I/O ports serve as thread-safe queues to transfer work between
threads. There are twice as many worker threads as I/O ports
because two threads are associated with each I/O port. The
thread pool is managed by the operating system, and can
vary between OS versions; therefore, these features are subject
to change between targets and malware variants. For these
reasons, we remove them from the feature set.

3) Feature Importance: To assess feature importance, we
converted the strings in the memory-mapped files into binary
vectors and normalized the object count features using a simple
min-max scaler. Next, we investigate feature importance using
information gain and mean decrease impurity (MDI). Specifi-
cally, we use permutation importance [46] to find the statistical
mean of scores across ten random permutations of the feature
space. Let H(A) represent the entropy of some node A in
a decision tree, H(A) = −

∑N
j=1 pj log pj , where N is the

number of classes (malware families) and pj is the fraction of
samples labeled as malware family j. The information gain,
I(A,B) = H(A)−H(A|B), is the reduction in entropy when
the data is split from node A to a child node B. We also
consider the mean decrease impurity (MDI) using the Gini
impurity formula, H(A) = 1−

∑N
j=1 pj

2.

We use a random forest classifier with 100 trees and ten
random feature permutations. The random permutations of
features allow us to monitor how scores decrease when the
relationship between a feature and the target malware family
is broken by removing a feature. This type of permutation
importance removes bias from features that are correlated.
Figure 2 shows the mean information gain and MDI from
the permutations. The feature set of memory-mapped files had
99 unique strings, and hence 99 unique features. Principal
component analysis (PCA) [52] was applied to reduce the
dimensionality into a single feature set for feature importance
comparison. Results showed that the memory-mapped file

Fig. 2. Mean feature importance scores. MappedFileNames is the
PCA generated vector representing the names of memory-mapped files. The
remaining features are a subset of the handle counts feature set.

names, the number of memory-mapped handles, the total
number of handles, and the number of event registration
handles are among the features that are most important for
classification, while the number of semaphores and directo-
ries are less important for analysis. Therefore, in Table I
both SemaphoreHandles and DirectoryHandles are
removed.

IV. EVALUATION

In this section, we evaluate the feature set to understand
its robustness against concept drift. All experiments were
conducted on the dataset described in Section III-B, which
contains 1,044 malware samples (M ) collected from the wild
across 27 malware families, and augmented with 760 samples
(M ′) packed with UPX to simulate adversarial drift.

A. Classifier

The focus of our study is on feature analysis for mal-
ware classification, rather than optimizing the actual classifier
algorithm. Therefore, we chose a simple ensemble classifier
that takes a majority vote of individually trained multiclass
classifiers: k-nearest-neighbor (kNN), support vector classifier
(SVC), and extra trees classifiers (ETC). The classifiers were
implemented with Scikit-learn [30] in Python. For the kNN
classifier, we use the Euclidean distance metric for the object
counts feature set since the normalized feature space contains
continuous data. The names of the memory-mapped files are
represented as dichotomous (binary) data after text vectoriza-
tion, so a Jaccard distance is used for this feature set’s distance
metric.

B. Experiment Design

We conducted five experiments using various configura-
tions to capture the influence of concept drift that occurs
naturally within the malware, and our adversarial drift that
was simulated using packing. As discussed in Section III-B,
the set M represents the original malware as collected in the
wild, while M ′ are the modified variants. The experiments are
visualized in Figure 3, and are designed as follows:

Experiment 1 - Random Splits on M. This experiment
evaluates the features without simulated adversarial drift by
training and testing the classifier using the non-overlapping
subsets in the original malware M . Training and testing



Features Family Classification Type Classification
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5

Object Counts 0.88 0.85 0.88 0.88 0.84 0.94 0.95 0.95 0.94 0.93
Memory-Mapped File Names 0.87 0.86 0.86 0.87 0.80 0.93 0.93 0.92 0.93 0.92
Fused 0.88 0.83 0.89 0.88 0.83 0.95 0.94 0.95 0.95 0.94
API Calls (Binary Encoded) 0.74 0.72 0.73 0.68 0.64 0.95 0.95 0.95 0.93 0.93
API Calls (Histogram) 0.90 0.82 0.89 0.84 0.81 0.95 0.95 0.94 0.95 0.93

TABLE II: F1-Score results. The API histogram features performed the best when the training and testing split is not time-
aware. The introduction of concept drift (Exp. 2), simulated adversarial drift (Exp. 4), or both (Exp. 5) shows a greater decline
in performance for the API histogram features over that of the object counts and memory-mapped file names.

Fig. 3. Experimental design. Experiment 1 uses cross validation (CV) across
M , which is not temporally consistent. Experiment 2 is trained and tested
using temporally consistent splits on M . Experiment 3 introduces additional
artificial drift in M ′ and uses CV across M ∪M ′. Experiment 4 trains on M
and tests on M ′. Experiment 5 has temporally consistent windows and does
not train on M ′.

were done via a 3-fold cross validation and ignores temporal
consistency. The analysis is formally defined as: train, Xtest =
{x|x ⊂ X and (Xtrain ∩ Xtest) = ∅}, where X is the
feature representation of M .

Experiment 2 - Time-aware Splits on M. This experiment
evaluates the features against M using time-aware splits for
training and testing to ensure a temporally consistent eval-
uation. Using compile timestamps, training is conducted on
older malware (80%), while testing is conducted on newer
malware (20%). More formally: Xtrain = {x|x ∈ Xold}, and
Xtest = {x|x ∈ X ′ and x ∈ Xnew}.

Experiment 3 - Random Splits on M ∪ M ′. This exper-
iment teaches the classifiers to learn about the packed samples
by including them in training [16]. In this experiment, the
original malware and the transformed malware are combined
for training and testing using 3-fold cross validation. Formally:
Xtrain, Xtest = {x|x ⊂ (X ∪X ′) and (Xtrain ∩Xtest) =
∅}.

Experiment 4 - Train on M , Test on M ′. To evaluate the
robustness of the feature sets against our simulated adversarial
drift, we train the models on M , and test using M ′. In this
configuration, the models are not aware of the packing transfor-
mations. i.e., Xtrain = {x|x ∈ X}, and Xtest = {x|x ∈ X ′}.

Experiment 5 - Time-aware Split on M ∪ M ′. This
experiment considers both concept drift that naturally occurs
in the dataset, and our adversarial drift that was simulated
with packing. As such, this is the most rigorous and realistic
evaluation configuration. Formally: Xtrain = {x|x ∈ Xold},
and Xtest = {x|x ∈ X ′ and x ∈ Xnew}.

To compare our approach to a popular set of dynamic

features [5], [40], we extracted the API calls from each sample
using the Cuckoo sandbox3. We observed 206 unique API
calls across the dataset and treated each unique call as a
feature. We used two API feature representations: a binary
encoded representation and an API histogram. The binary
encoded representation encodes each call with a 1 if the call
was observed, and 0 otherwise. The histogram represents a
bag-of-words to capture the count corresponding to each call.
The API count histogram underwent the same preprocessing
pipeline (i.e., min-max scaler) as the object counts.

C. Labeling

To measure the impact of labeling on results, the five
experiments were performed using two different labeling con-
ventions. First, we used malware family labels, shown as
Family Classification in Table II. Second, we labeled each
malware based on its type descriptor via manual inspection of
the malware’s primary capabilities. For type descriptions, we
follow the Structured Threat Information Expression (STIX)
v2.1 grammar for describing malware4. STIX is an open stan-
dard language for communicating cyber threat information. By
using STIX vocabulary, we ensure a type labeling consistent
with the cyber threat intelligence community. The eight type
labels generated from our dataset are backdoor, bot, down-
loader, exploit kit, keylogger, resource exploitation, spyware,
and trojan. These results are shown as Type Classification in
Table II.

D. Results

The results from our experiments are shown in Table II.
We present our results as F1-Scores, or the harmonic means
of the precision and recall.

1) Summary of Results: Experiment 1 evaluated the chosen
features using a traditional cross validation on the origi-
nal malware. These results indicate that handle counts are
slightly more effective features for malware classification than
memory-mapped file names, while the fusion of both offers no
performance benefit over the handle counts alone, while the
fusion of both performs slightly better in type classification.
Experiment 2 shows a performance hit when the training
and testing windows are temporally consistent, demonstrating
evidence of concept drift. While the API histogram features
suffered a 0.08 drop in F1-Score, our fused features only
dropped by 0.05, suggesting improved robustness to the drift
over API calls.

3https://github.com/cuckoosandbox
4https://oasis-open.github.io/cti-documentation/



Fig. 4. Mean difference of object counts by family. Darker boxes indicate a
larger difference.

Training classifiers on anticipated changes has been shown
to improve classifier robustness [16]. Although this type adver-
sarial training can be a useful technique to improve classifier
robustness, it assumes the feature perturbations are known
during training. This assumption abuses some temporal bias,
where the training data assumes future knowledge of the
testing data [31]. Experiment 3 validated this claim, demon-
strating negligible performance hits when our simulated drift
(via packing) was included in testing and training. However,
Experiment 4 suggests that our features are more robust to
packing than API calls. The F1-scores for the classifiers trained
on API calls dropped by 0.05 when the packed samples
were neglected from training, while classifiers trained on our
features only dropped by approximately 0.01.

Experiment 5 contains the most rigorous and realistic set-
ting, where the classifiers were only trained on older instances
of the original malware. Testing included the newer instances
and the packed versions to simulate concept drift and an ad-
versarial drift. The F1-scores from API-based features dropped
by approximately 0.09, while our features only dropped by
0.05, suggesting improved robustness against concept drift and
packing over API calls. Next, we will show that this is because
the packed samples do not significantly change the variance
of the more robust features.

2) Feature Robustness: We analyzed the variance of the
object counts between feature vectors X and X ′, and calcu-
lated the perturbation vector as δ(x) = x−x′. Figure 4 shows
the delta of the mean object counts between the packed and
unpacked samples in the entire dataset. As can be seen, packing
generally had little influence on the object counts, demonstrat-
ing their stability and robustness to packing. However, we do
see larger differences in object count values for commodity
malware in Figure 4, specifically Hupigon, Blackhole, Masad,
and Papras. Deeper inspection revealed that these malware

use a variety of packers already, and our adversarial samples
created a double-packed effect, causing unpacking issues at
runtime.

The API histogram suffered a performance hit in the
temporally consistent evaluations (Experiments 2 and 5), espe-
cially for family classification. Packing adds a layer of noise
to the API calls. Specifically, the unpacking process makes
additional calls to the OS loader API to resolve the import table
at process start-up. For example, we observe a large increase
in calls to LdrLoadDll and LdrGetProcAddress at
the beginning of the call sequence, altering the histogram’s
distribution of API call counts. In this case, adversarial training
indeed offers a performance benefit. The binary encoded API
representation performed worse than all the other techniques
evaluated; however, the approach’s performance was not af-
fected by packing because the feature representation ignores
the number of times each API was invoked.

Inherently robust features reduce the need for additional
training and should be a focus of future research in malware
classification. Our results demonstrate improved feature robust-
ness by comparing performance degradation when faced with
temporally consistent training and testing windows.

3) Labeling Conventions: Our labeling experiments
demonstrate the performance implications of choosing a
particular labeling convention for malware: type classification
or family classification. Due to the decreased specificity
of the clusters, type classification experiments yield better
results. Most notably, type classification improves the recall
scores by ≈ 0.10 due to fewer false negatives. Although type
classification performs better, the decreased distinctiveness
in type labels reduces the amount of usable information one
can infer about the malware. By contrast, specific family
labels aid defenders in reasoning about the attack, performing
attribution, and assessing damage. For example, we grouped
the malware that primarily acted as trojans into a single label
for type classification. Indeed, they were accurately classified
at test time; however, discriminating between which variant of
the trojan (i.e., Clemag vs. DsBot) can expose the necessary
intelligence for analysts to pursue follow-on defensive actions.
Therefore, we recommend defenders perform a cost-benefit
analysis to determine if the increased probability of predicting
the correct type is worth the decrease in knowledge about the
malware. Next, we take a closer look at the malware samples
that were misclassified in our experiments.

E. On Misclassifications

Across all family classification experiments, the CookieBag
malware was misclassified into the TARSIP family. Both
are backdoors that use HTTPS headers for command-and-
control; they are also both attributed to APT1. Despite this
misclassification, the families are similar in semantics and
origin, making the incorrect result understandable. When these
two families were combined into a single family labeled APT1
HTTPS Backdoors, we observed the accuracy and F1-Scores of
family classifiers improved by ≈ 4% in all family classification
experiments. This is another observation on how labeling can
influence performance reporting.

We also observe some misclassifications within the com-
modity malware families (e.g., Delf, Papras, Hupigon, Poison).



These malware samples are built from modular exploit kits and
are a part of a malware distribution platform with an infection
payload, so the capabilities can vary widely between samples.
For example, Delf malware is known to vary in capabilities
and intent based on which modules the attacker utilizes. This
phenomena is observed again in our Type Classification ex-
periments. All of the type misclassifications came from exploit
kits misclassified as backdoors. However, many exploit kits can
include a subset of backdoor functionality. In order to improve
classifier performance for modular exploit kit malware, we
would need to separate the payloads from the broader malware
platform. This further illustrates how a “hard” dataset that
incorporates classes that are not easily distinguishable can
capture performance that is more representative of what may
be encountered in a deployed environment.

V. DISCUSSION

Our results indicate that handle counts and memory-
mapped file names are effective features for Windows malware
classification. The primary benefits include a high degree of
robustness against packing and a reduced performance hit due
to concept drift.

Labeling Conventions. Our results also expose the effects
of labeling on performance. Although malware type labeling
is popular and they yield better performance in our study, we
suggest their usability in malware analysis is limited. Further,
we recommend using standardized type label approaches such
as STIX, to create labeling consistent with the cyber threat
intelligence community. We caution against the use of anti-
virus labels in malware classification as these labels are based
on signatures that can be easily evaded through adversarial
techniques. We recommend expert malware analyst domain
knowledge as the optimal family labeling method.

Dataset Curation. We use a novel dataset that is hard
due to the variance of commodity malware, informative family
labels, an additional testing set of packed malware, and the
availability of time-aware training/testing splits. Packing is
highly transformative, making it a realizable and effective
method to generate testing samples. Therefore, we make
three recommendations for curating malware datasets: (i) the
labeling methodology should provide analysts with actionable
information that addresses the underlying problem of malware
classification; (ii) provide testing datasets that are representa-
tive of the manipulations that may be observed in the wild;
(iii) ensure temporal consistency in training and testing.

Feature Selection and Domain Knowledge. Finally, we
utilized domain knowledge derived from systems analysis
when choosing features rather than deep learning based feature
selection approaches. Deep learning feature selection is a
black-box approach to selecting and weighting features based
on the training data. Unfortunately, deep learning cannot
predict how an attacker will modify malware features to force a
misclassification, nor can it provide insight as to why particular
features were chosen, making them vulnerable to adversarial
samples [8]. As a result, malware analysis expert knowledge
is critical for building more robust classifiers.

VI. CONCLUSION

In this paper, we present handle counts and memory-
mapped file names as dynamic features for malware classifica-

tion. Our selected features are generally agnostic of implemen-
tation specifics, making them robust against concept drift and
common adversarial manipulations, like obfuscation. Unlike
past studies that used adversarial training to boost classifier
performance, we found that such training had a negligible
impact on our classifier, because the features were already
inherently more robust. The results indicate that researchers
should continue pushing to uncover robust feature sets rather
than relying on adversarial training, which tries to predict
how an attacker will manipulate malware. We also show
how malware labeling techniques can influence performance
reporting, and make recommendations on labeling and dataset
practices to create more realistic studies. Future work should
adopt rigorous evaluations and feature justification for use in
malware classification.
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