
Test Suite Coverage Measurement and Reporting for Testing an

Operating System without Instrumentation

Hermann Felbinger

Virtual Vehicle Research Center

Graz, Austria

hermann.felbinger@v2c2.at

Joel Sherrill

OAR Corporation

Huntsville, AL

joel.sherrill@oarcorp.com

Gedare Bloom

Dept. of Computer Science

Howard University

Washington, DC

gedare.bloom@howard.edu

Franz Wotawa

Institute for Software Technology

Graz University of Technology

Graz, Austria

wotawa@ist.tugraz.at

Abstract

Measuring the coverage of a test suite provides common metrics to assess the quality of a test suite. In
safety-critical applications, as in the domains of avionics and automotive, complete coverage is required
for certification. Usual approaches to measure the coverage require instrumentation of the source code or
the object code of the system under test to obtain processable execution traces. However, instrumentation
might change the behavior of the system under test. In this paper we show an approach to measure the
coverage of a test suite and to generate human-readable reports without instrumentation of the system
under test. As a system under test we use an operating system. Our approach is based on the execution
traces obtained from an instrumented QEMU CPU emulator. We use this emulator to execute the
operating system and the test cases. From the execution of the test cases we obtain execution traces. We
provide a framework to map these execution traces back to the source code and to generate a detailed
report exposing execution and branching (taken/not taken) information at the assembly language level
and source code level.
To evaluate our approach we generate coverage reports for the RTEMS real time operating system. We
provide detailed coverage results for RTEMS running on different CPUs in this paper. Coverage of a test
suite can be used by operating system developers to assess test suite quality and guide test case creation.
Our approach is due to the lack of instrumentation of source code and object code broadly applicable for
development of embedded systems applications.

1



1 Introduction

Different industry and country specific stan-
dards specifying functional safety requirements for
software-based systems exist. The ECSS-E-ST-40C
[3] Standard defines the principles and requirements
applicable to space software engineering, ISO 26262
[5] is considered as state-of-the-art in automotive
electric and electronic systems, and DO-178C [4] is
the document by which certification authorities ap-
prove all software-based avionics systems. These are
three examples of standards which software of sys-
tems in the respective domain have to satisfy to ob-
tain certification. All of these standards have in com-
mon that testing the software is quantified in code
coverage where the standards require different cover-
age metrics depending on the criticality level of the
system under test (SUT).
Code coverage is the percentage of the software arti-
facts that have been executed (covered) by the test
suite [3]. Software artifacts are e.g. statements, con-
ditions, and decisions within the source code, or in-
structions and branches within the object code.
Three different methods exist to obtain code cover-
age:

1. Instrument Source Code to compile the
SUT including instrumentation code that is
used to generate traces during execution.

2. Instrument Object Code by a compiler to
generate traces during execution.

3. Obtain execution traces from the execu-

tion platform without instrumentation.

The differences of the three methods are visu-
alized in Figure 1. The methods instrumenting the
source and object code are labeled as conventional
approach. In this work we introduce a tool chain
based on the third method labeled as approach by
virtualization in Figure 1. As execution platform
we utilize the CPU emulator QEMU [7] which vir-
tualizes the target CPU and dynamically translates
object code into native host instructions.
Different versions of QEMU [6] and also other CPU
emulators, e.g. TSIM [8], Skyeye [9], etc. exist
which produce a debug log of the executed instruc-
tions when an executable is running. This debug log
is the trace information which is analyzed to iden-
tify branch instructions and to determine whether
the branch was taken or not taken. In this work we
use an extended version of QEMU [7] that produces
execution traces which are analyzed to obtain cover-
age information. This QEMU version was extended
within the COUVERTURE project [2] and therefore

named Couverture QEMU.

The tool we introduce here, to process coverage
information and generate the coverage reports, was
named covoar. Covoar was designed to analyze code
coverage as automated as possible. Because covoar
supports performing coverage analysis using a set of
different CPU emulators, covoar has to solve issues
caused by different formats of execution informa-
tion. Each source producing execution information,
e.g. emulator, hardware debugger, etc. may pro-
duce the information in a different format. Covoar
converts the execution information into an internal
representation where currently formats produced
by TSIM, Skyeye, QEMU, and Couverture QEMU
emulators are supported. From the internal repre-
sentation covoar merges execution information for a
set of methods of interest.
The output produced by covoar is actually a set of
HTML and simple ASCII files that give a developer
the necessary information to quickly determine the
current status of the code coverage and enough in-
formation to determine the location of uncovered
code. The location of uncovered code is determined
by using the source to object code mapping infor-
mation extracted from the debugging information
contained in the SUT. The resolution of uncovered
code does not simply translate into additions to the
test suite. Often the resolution points to improve-
ments or changes to the analyzed code. Covoar is
invoked once the execution of the test suite is com-
plete.

Since the aforementioned standards demand that
all requirement-based test cases must be executed on
the target platform for coverage purposes a final ver-
ification on the target platform is required. Applying
the approach by virtualization for coverage analy-
sis, this final verification can be simplified, because
no instrumentation was added to the executables.
Therefore the final verification entails rerunning the
test cases and showing that the results are the same
as on the emulator.

Covoar is an open source tool and freely avail-
able, developed within the RTEMS project [1]. In
this work we use the RTEMS operating system (OS)
as SUT and provide two coverage reports result-
ing from executing the test suite, provided by the
RTEMS project, within the Couverture QEMU emu-
lator. As target platforms for these two examples we
decided to use Intel 80386 and SPARC. The reports
currently contain information about instruction and
branch coverage.

2



Figure 1: Approaches to extract code coverage information [2].

2 Preliminaries

In this work we use a CPU emulator to obtain execu-
tion traces from which we generate a code coverage
report. We obtain these execution traces from the
emulator without instrumenting our SUT and ana-
lyze their coverage regarding different coverage met-
rics.

2.1 CPU emulator QEMU

QEMU is an open source CPU emulator. As an
emulator QEMU enables a host computer system to
behave like another computer, called guest. There-
fore QEMU enables a host computer to run software
which was designed for the guest system.
All versions of QEMU can be configured to produce a
debug log of the instructions executed while an exe-
cutable is running. An extended version of QEMU is
Couverture QEMU that produces a trace log which is
denser than the debug log and represents a superset
of the execution information contained in the debug
log. This information can be analyzed to identify

branch instructions and to determine whether the
branch was taken or not taken.

The extensions for Couverture QEMU were de-
veloped within the COUVERTURE project. The
COUVERTURE project had the objectives to pro-
duce a coverage analysis tool-set with the ability to
generate artifacts that allow the tools to be used
for safety-critical software projects. Beyond the pro-
duction of a tool-set an important goal was to raise
awareness and interest about safety-critical and cer-
tification issues. In the COUVERTURE project the
front-end, that is used to analyze execution infor-
mation and generating coverage reports including
source to object code mapping, is only available for
programs written in the programming language Ada
[10].

The QEMU emulator and therefore also Couver-
ture QEMU dynamically translates object code into
native host instructions. As a result test suites typ-
ically execute faster than on the actual target hard-
ware. To perform validation campaigns within the

3



space industry emulators must be qualified before
they can be used for credit. To our knowledge TSIM,
a commercial product from Gaisler Research, is such
a qualified emulator.
Despite the non-intrusive extraction of execution in-
formation where the SUT is not instrumented, an
emulator enables levels of debugging and testing that
are not readily available on real hardware. An emu-
lator can offer [11]:

• Greater availability: Early production hard-
ware is often available in very limited quan-
tities or is expensive. The emulator allows a
greater number of embedded software develop-
ers to access the tools they need to write and
test software.

• More control: The emulator can be easily
stopped, reconfigured, and rerun. The system
state can be saved and restored. This is not
easy on real hardware.

• Increased debugging ability: The emulator
provides a debugging environment that is not
possible to create on real hardware. The emu-
lator can show internal state of devices reveal-
ing information that cannot be captured with
a logic probe. The emulator also provides more
debugging control (with the use of breakpoints)
that is not possible on real hardware.

• Increased stability: Early prototype hard-
ware may have bugs or be unstable. The emu-
lator enables comparative testing on early pro-
totype hardware so that hardware bugs are eas-
ier to identify.

• Facilitate Testautomation: An emulator al-
lows transferring the SUT into a certain state
before the execution starts which facilitates au-
tomatically execution of tests.

2.2 Code Coverage Metrics

Code coverage or also structural coverage is used
as a measure to analyze which parts of an SUT are
tested. Depending on the level of the language in
which the SUT is represented we divide structural
coverage into two different measures. First we use
object code coverage for a lower level language (ob-
ject code), second we use source code coverage for
higher level languages (C, C++, etc.). As shown
in [12] object code coverage and source code cover-
age are not equivalent. Therefore, since source code
coverage is required for certifications in the afore-
mentioned domains of automotive, avionics, etc., we

treat both of them in this work.

Object Code Coverage includes two measures:
first measure is the proportion of executed instruc-
tions to existing instructions, second is the propor-
tion of executed branches to existing branches within
an SUT.

Source Code Coverage includes three simple
measures, and combinations of them subsuming the
simple ones. The simple measures are the proportion
of executed statements to existing statements, the
proportion of executed conditions to existing con-
ditions, and the proportion of executed decisions to
existing decisions within an SUT. The only combina-
tion we use in this work is the modified condition /
decision coverage (MC/DC). MC/DC confirms that
every point of entry and exit was invoked at least
once, every condition in a decision has been taken
on all possible outcomes at least once, and each con-
dition has been shown to independently affect the
overall decision outcome.

Detailed introductions of source and object code
coverage can be found in [12]. In the aforemen-
tioned standards we found inconsistencies in the use
of branch and decision coverage. Where DO-178C
and ECSS-E-ST-40C require decision coverage, ISO
26262 requires branch coverage. Due to the defini-
tion of decision in the position paper [13] we assume
branch coverage used in ISO 26262 to be equivalent
to decision coverage.

3 Covoar

The tool covoar has been developed as part of the
RTEMS project to analyze the coverage of the test
suite created to test the RTEMS OS. Traditionally,
code coverage analysis has been performed by instru-
menting the source code or object code or by using
special hardware to monitor the instructions exe-
cuted. The guidelines for the RTEMS code coverage
effort were to use existing tools and to avoid altering
the code to be analyzed. This was accomplished by
using a CPU emulator that provides execution infor-
mation. This information is processed by covoar to
determine which instructions are executed.

Covoar is not restricted to be used only in com-
bination with the RTEMS operating system. Covoar
is broadly applicable for development of embedded

4



systems applications.

Covoar takes the execution information, pro-
vided as execution traces, from a CPU emulator,
marks the corresponding symbols, which are ex-
tracted from the execution traces in the SUTs symbol
table, as executed, and generates a coverage report.
This report also contains information of executed
and not executed source code which is created by
using the debug information in DWARF format [16]
within the SUT. The symbol table from the SUT can
be used to analyze coverage when executing a test
suite because a set of object code to be analyzed is
the same in all tests and linked to the same address
range. Covoar is a next generation program which
takes a list of symbols and accounts for them being
at different addresses in different tests. It knows
the sizes and offsets of instructions are the same, so
it can merge the coverage information of multiple
programs using the same method.

Covoar requires a CPU emulator which cap-
tures execution information and has a board support
package, which, e.g., for RTEMS, can be found in
[17]. Currently covoar supports processing the exe-
cution information formats from the CPU emulators
QEMU, Couverture QEMU, TSIM, and Skyeye.
Further covoar requires installation of the GNU
Binutils [18]. From the GNU Binutils covoar uses
nm to obtain symbol tables, objdump to disassemble
the SUT, and addr2line to associate addresses from
executables to filename and line number of source
code.

3.1 Execution Traces

In this work we process execution traces produced
by Couverture QEMU. The execution traces appear
in a binary output file in a format specified within
the COUVERTURE project. Two kinds of execution
traces are relevant in this work:

Summary traces: The output identifies the ad-
dress ranges of the instructions that were executed,
and for conditional branches, which branch(es) was
(were) taken. The output data has bounded size (ac-
tually linear with respect to object program size), as
it only reveals which instructions/branches were ex-
ecuted and not the entire execution history.

Full historical traces for specified address
ranges: In addition to indicating the instructions

that were executed, the output shows which branch
was taken at each evaluation of the relevant condi-
tional expressions. The size of the output data de-
pends on the execution history.

3.2 Coverage Report Generator

The output of covoar is a detailed report consist-
ing of HTML and ASCII files. Currently these re-
ports contain information about branch and instruc-
tion coverage. Further the reports expose execution
and branching (taken/not taken) information at the
assembly language level and high level language level.
The execution and branching information is shown as
highlighted code which is directly linked within the
report.
The report contains an overview summarizing the
output of the coverage analysis, a detailed cover-
age report containing links from symbols to source
code, a branch report containing links from symbols
to source code, a direct link to the annotated assem-
bly, an overview of analyzed symbols containing the
sizes in byte, and a list of explanations that were not
found for this coverage analysis. Explanations allow
senior developers to analyze coverage gaps and write
guidance for addressing the gap.

4 Experimental Results

Here we show two coverage reports obtained from
executing the test suites for the RTEMS OS within
Couverture QEMU. We built RTEMS 4.11 with an
equivalent configuration for a PC386 and a LEON2
CPU. The executed test suite contained 421 test
cases.

4.1 Coverage Report for PC386

To execute the test cases we built RTEMS and the
board support packages (BSP) for a PC386 CPU. Af-
ter a single execution of all 421 test cases, where we
set a timout of 180 seconds, 399 test cases passed, 1
failed, and 21 timed out. The coverage report, gen-
erated after the execution of the test cases, presents
the results as shown in Figure 2. Figure 2 provides a
summary of the instruction and branch coverage for
six analyzed libraries from RTEMS.

In Figure 3 a list of uncovered symbols from the
core library is shown. These symbols are already
mapped to the source files which are annotated with
executed/not executed and taken/not taken state-
ments as shown in Figure 4.

5



Figure 2: Overview of coverage results for PC386 CPU.

Figure 3: Uncovered symbols with links to the annotated source code.

4.2 Coverage Report for LEON2

To execute the test cases we built RTEMS and the
board support packages (BSP) for a LEON2 CPU.
After a single execution of all 421 test cases, where
we set a timout of 180 seconds, 409 test cases passed,
10 failed, and 2 timed out. The coverage report, gen-
erated after the execution of the test cases, presents
the results as shown in Figure 5. Figure 5 provides a
summary of the instruction and branch coverage for
six analyzed libraries from RTEMS.

5 Related Work

In this section we provide a selection of tools and
tool suites related to the tool chain introduced in this

work. In [12] the authors introduce a tool chain very
similar to the tool chain from this work. The au-
thors of [12] are developers of the extended QEMU,
namely Couverture QEMU. The main difference of
their work to ours is that they use as a front end
a coverage analysis tool supporting code coverage
for Ada whereas we support C and C++. Actually
our approach is language independent since it re-
lies on nm, addr2line, and objdump. Those handle
the language specifics. In this work we focus on C
and C++. Also within the COUVERTURE project
the authors of [14] provided support for Objective
CAML. In [19] the authors describe the applica-
tion of an open-source tool chain including a tool to
analyze coverage. They use Couverture QEMU to
produce execution traces and a front end for C code,
named XCOV. Unfortunately no further documen-

6



Figure 4: Example for annotated source code.

tation for XCOV is publicly available.
An approach how to perform coverage analysis using
on-chip debugging and obtaining execution informa-
tion via the JTAG interface can be found in [20].
They also used the RTEMS OS to evaluate their
approach.
Several commercial, intrusive tools for coverage anal-
ysis which instrument source or object code of pro-
grams written in C or C++ exist. These are certified
tools, e.g., Bullseye [15], SCADE Test Model Cov-
erage [21], or LDRAcover [23] which are used in
industry to obtain the required coverage reports.

6 Conclusions

In this paper we introduced a tool chain to mea-
sure the code coverage of a test suite. Code coverage
represents a measure to assess the quality of a test
suite. Since in safety-critical applications, as in the
domain of avionics and automotive, complete cov-
erage is required for certification, several different
approaches to measure code coverage and tools im-
plementing these approaches already exist. Most of
the existing tools are intrusive, which means, that
these tools instrument either the source code before
compilation or the object code during compilation.
Applying our tool chain does not need any changes
within the SUT. In this work we explained the CPU
emulator Couverture QEMU which executes an SUT
and produces the execution information as execution
traces. As an SUT we use a real time operating

7



Figure 5: Overview of coverage results for LEON2 CPU.

system RTEMS for which we present coverage re-
ports as experimental results. We introduce the tool
covoar which supports processing of different execu-
tion trace formats and produces the coverage reports
as HTML and ASCII files.

6.1 What was discovered?

The RTEMS code coverage effort with covoar be-
gan between the 4.8 and 4.9 (2008) release series.
There was no objective coverage measure before this
point. Some of our initial observations were interest-
ing. First, we were a little surprised at the incom-
pleteness of the test suite. We knew that there were
some areas of the RTEMS code that were not tested
at all, but we also found that areas we thought were
tested were only partially tested. We also observed
some interesting things about the code we were ana-
lyzing. We noticed that the use of inlining sometimes
caused significant branch explosion. This generated
a lot of uncovered ranges that really mapped back to
the same source code. We also found that some de-
fensive coding habits and coding style idioms could
generate unreachable object code. Also, the use of a
case statement that includes all values of an enumer-
ated type instead of an if statement sometimes lead
to unreachable code. Also we generally improved
code via refactoring and simplification, changes to
coding style and addition of test cases. None alone
was sufficient.

6.2 Future Work

Currently we are working on integrating gcov [22]
into our tool chain such that we can validate the
obtained coverage results of covoar and gcov mutu-
ally. Further we will revise the report generator to
modularize the output considering the analyzed exe-
cutable, library or object file. To analyze source code
coverage metrics as decision coverage and MC/DC
we will map the branches within full historical exe-
cution traces to the source code and check whether
decision coverage or MC/DC is satisfied.

References

[1] RTEMS: Real-Time executive for multiprocessor
systems. http://www.rtems.com

[2] Bordin M., Comar C., Gingold T., Guitton J.,
Hainque O., Quinot T., Delange J., Hugues
J., Pautet L.;Couverture: an Innovative Open
Framework for Coverage Analysis of Safety
Critical Applications. In Ada User Journal, Vol.
30, Issue 4, 2009.

[3] ECSS standard ECSS-E-ST-40C. European Co-
operation for Space Standardization (ECSS).
Space engineering - software. ESA-ESTEC, Re-
quirements & Standards Division, Mar 2009.

[4] RTCA/DO-178C Software Consideration in
Airborne Systems and Equipment Certification.
RTCA Inc., 2011.

[5] ISO 26262. Road vehicles - Functional safety.
Nov 2011.

[6] http:// wiki.qemu.org

[7] https:// forge.open-do.org/ projects/
couverture-qemu

[8] http:// www.gaisler.com/ index.php/
products/simulators/tsim

[9] http:// skyeye.sourceforge.net

[10] http:// ada-auth.org

[11] http:// www.esa. int/ TEC/ Software_
engineering_and_ standardisation/

SEMHYAXIPIF_0. html

[12] Bordin M., Comar C., Gingold T., Guitton
J., Hainque O., and Quinot T.; Object and
Source Coverage for Critical Applications with
the COUVERTURE Open Analysis Framework.
In Embedded Real Time Software and Systems
(ERTSS) 2010.

8



[13] CAST-10, What is a ”Decision” in Applica-
tion of Modified Condition/Decision Coverage
(MC/DC) and Decision Coverage (DC)? Posi-
tion Paper. Certification Authorities Software
Team. 2002.

[14] Wang P., Jonquet A., Chailloux E.; Non-
Intrusive Structural Coverage for Objective
Caml. In Electronic Notes in Theoretical Com-
puter Science, Vol. 264, Issue 4, 2011.

[15] http: // www. bullseye.com

[16] http: // www. dwarfstd.org

[17] https:// devel.rtems.org/wiki/ TBR/
Website/Board_Support_Packages

[18] http: // www. gnu. org/software/binutils/

[19] Delange J., Perrotin M.; On integration of open-
source tools for system validation, example with
the TASTE tool-chain. In 13th Real-Time Linux
Workshop, 2011.

[20] Cunha J. C., Barbosa R.,Rodrigues G.; On the
Use of Boundary Scan for Code Coverage of
Critical Embedded Software. In IEEE 23rd In-
ternational Symposium on Software Reliability
Engineering (ISSRE), 2012.

[21] http:// www.esterel-technologies.
com/products/scade-test/

test-creation-host-execution/

scade-test-model-coverage/

[22] https:// gcc. gnu. org/onlinedocs/gcc/
Gcov.html

[23] http:// www.ldra. com/en/ ldracover

9


