
Vulnerability of Controller Area Network to
Schedule-Based Attacks

Sena Hounsinou∗, Mark Stidd∗, Uchenna Ezeobi∗, Habeeb Olufowobi†, Mitra Nasri‡, Gedare Bloom∗
∗University of Colorado Colorado Springs, Colorado Springs, CO, USA

†University of Texas at Arlington, Arlington, TX, USA
‡Eindhoven University of Technology, Eindhoven, Netherlands

{shoueto, mstidd2, uezeobi, gbloom}@uccs.edu, habeeb.olufowobi@uta.edu, m.nasri@tue.nl

Abstract—The secure functioning of automotive systems is vital
to the safety of their passengers and other roadway users. One
of the critical functions for safety is the controller area network
(CAN), which interconnects the safety-critical electronic control
units (ECUs) in the majority of ground vehicles. Unfortunately
CAN is known to be vulnerable to several attacks. One such
attack is the bus-off attack, which can be used to cause a victim
ECU to disconnect itself from the CAN bus and, subsequently,
for an attacker to masquerade as that ECU. A limitation of
the bus-off attack is that it requires the attacker to achieve
tight synchronization between the transmission of the victim and
the attacker’s injected message. In this paper, we introduce a
schedule-based attack framework for the CAN bus-off attack
that uses the real-time schedule of the CAN bus to predict
more attack opportunities than previously known. We describe
a ranking method for an attacker to select and optimize its
attack injections with respect to criteria such as attack success
rate, bus perturbation, or attack latency. The results show that
vulnerabilities of the CAN bus can be enhanced by schedule-
based attacks.

Index Terms—Controller Area Network, Schedule-Based At-
tack, Bus-off Attack

I. INTRODUCTION

The evolution of electronic control units (ECUs) and net-
works has made the vehicle a complex cyber-physical system.
The modern vehicle now embeds up to 100 ECUs with
millions of lines of software code that enable their commu-
nication with the outside environment and the Internet. The
dramatic increase in vehicle functionality has exposed their
safety-critical systems to cyber-physical risks and attacks. In-
vehicle networks, such as the controller area network (CAN)
bus, have several vulnerabilities [1]–[3]. The CAN bus is
an attractive target for cyber attackers because it does not
implement security mechanisms despite being widely used in
automotive and avionics domains [4].

The CAN bus presents a predictable behavior to satisfy
the transmission requirements of each message. While the
schedulability analysis of the CAN bus guarantees messages
will meet their deadline in the worst-case [5], the determinism
of its timing model can expose the scheduling information
of the safety-critical messages [6,7]. In this paper, we show

This work is partially supported by NSF CNS-2046705, NSF CNS-
2011620, NSF OAC-2001789, and Colorado State Bill 18-086.

that this information enables an adversary to initiate schedule-
based attacks to compromise the automotive system more
effectively than prior attack methods.

A schedule is a sequence of resource allocations to entities,
and a successful schedule-based attack uses the schedule
to determine when an attack should happen with respect
to the timing and ordering of the targeted entity’s resource
access. We introduce, formalize, and evaluate the efficacy of
a schedule-based attack on the CAN bus by leveraging the
transmission schedule.

The main contributions of this paper are:
1) A comprehensive investigation of the vulnerabilities of

the CAN bus to schedule-based bus-off attacks. This
investigation includes analysis of the traditional bus-off
attack strategy for synchronizing the attack injection,
and demonstration that the schedule-based approach is
more effective.

2) A framework for schedule-based attacks that includes
schedule analysis, prediction, and exploitation.

3) An optimization strategy to maximize the attacker’s
criteria (e.g., short response time, high success ratio)
within the exploitation stage of the schedule-based attack
framework.

The remainder of the paper is as follows: first, we pro-
vide some background about CAN and the traditional bus-
off attack, followed by the motivation for this work in Sec-
tion II. In Section III-A we describe the system model and
in Section III-B the threat model used throughout this paper.
The schedule-based attack and our approach to implement
it are presented in Section IV. In Section V we describe
our experimental evaluation. The related work is reviewed in
Section VII and Section VIII concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we provide some preliminaries about CAN
bus and the bus-off attack.

A. Controller Area Network (CAN)

CAN is a broadcast serial communication protocol
with carrier-sense multiple access and collision detection
(CSMA/CD) that uses a lossless bitwise arbitration to transmit
binary signals over twisted pair cabling. The bus facilitates

1

reliable communication with no central controller. CAN trans-
fers messages according to a fixed-priority non-preemptive
scheduling policy and uses non-return to zero bit encoding.
CAN bus signifies bits with logic value of 0 as dominant
and bits with logic value of 1 as recessive. It distinguishes
4 different message frame formats: data, error, remote, and
overload frames. Data is transmitted in the bus through the
data frame that includes the identifier field (ID) used in the
arbitration process. A data frame contains up to 8 bytes of
data field and its length is specified in the data length code
(DLC).

CAN applies a non-destructive arbitration process and,
when a message wins arbitration and starts transmission, it
can not be preempted. Messages win arbitration according to
their priority determined by the message ID; the smaller the
ID the higher the priority. Any node may start transmission
when it has detected that the bus is idle, beyond the interframe
space (IFS). Transmission begins by sending a dominant start
of frame (SOF) bit, followed by ID bits, one at the time,
starting with the most-significant bit. When multiple nodes
start transmitting concurrently, the bus is recessive only if all
nodes float a recessive bit, and a transmitting node monitors
the bus to ensure that it does not read a dominant bit when it
sent a recessive bit, thereby losing arbitration.

Figure 1 shows an example of three nodes during arbitration.
At bit time T0, Node 1, Node 2, and Node 3 attempt to
start transmission by introducing a dominant SOF bit on the
CAN bus. At time T1, all three nodes send a dominant bit as
their first identifier bit. During the following bit time, Node
3 reads that a dominant bit has been introduced on the bus
(as both Node 1 and Node 2 sent a dominant bit) while it
fails to transmit a recessive bit. At that point, Node 3 loses
arbitration and stops transmitting. After T2, only Node 1 and
Node 2 remain in arbitration until time T3 when Node 1 fails
to transmit a recessive bit. Node 2 therefore wins arbitration
and continues transmission beyond T3. Node 1 and Node 3
will automatically attempt to retransmit at T4 after Node 2
has completed transmitting and the IFS has elapsed.

B. CAN Fault Confinement

The CAN protocol implements robust error management
that is essential for fault tolerance and aimed at detecting errors
caused by disturbances or hardware faults in the bus. When
an error occurs in the bus communication, an error flag is
raised that is signaled to all nodes on the bus. The node that
detects the error, depending on its state—error-active or error-
passive—transmits either an error-active flag of six dominant
bits or an error-passive flag of six recessive bits, and the
erroneous message is discarded by the receiving nodes. The
frame in transmission is then queued for retransmission by the
sending node.

Each node implements two error counters with initial values
of 0: transmit error counter (TEC) and receive error counter
(REC). The transitions between the error states depend on the
counters. When an error is observed by a non-transmitting
node, its REC is increased by 1, and when observed by a

Node 3

CAN Bus
T0 T1 T2 T3

Inter Frame
Space

End of Inter Frame
Space or Bus Idle Time

Node 1

Node 2

T4

Dominant Bit (Logical 0) Recessive Bit (Logical 1)

Dominant or Recessive Bit (Logical 0 or Logical 1)

Fig. 1: CAN Arbitration Example. Node 1-3 arbitrate simul-
taneously. Node 2 wins the bus at time T3 and sends its
remaining bits (in green). During the next transmission attempt
at time T4, Nodes 1 wins arbitration against Node 3.

transmitting node, then the TEC is increased by 8. If the TEC
or REC exceeds 127, the node transitions from error-active
to error-passive state, and from passive to bus-off when TEC
reaches 255. An error-active state is restored when the TEC
and REC of a node are below 128.

The bus-off state is an error state of a CAN controller in
which the node is disconnected from the bus communications,
i.e., it can neither transmit nor acknowledge frames. A node
that is in the bus-off state can only rejoin the network
after observing 128 occurrences of the bus-free signal of 11
consecutive recessive bits. When a node recovers from bus-
off, it resets its counter and starts from the initial error-active
state.

C. CAN Bus-Off Attack

In 2016, Cho and Shin [8] introduced the bus-off attack,
which exploits the fault tolerance feature of the CAN protocol.
The authors identified three conditions that need to be satisfied
for a successful attack: (i) the attack message must have the
same ID as the victim message; (ii) it must be synchronized
with the victim message, and (iii) it must have a dominant
bit in at least one position where the victim message has a
recessive bit. Under the software-based (remote) threat model,
the dominant bit must occur in either the control or data fields
of the CAN frame since the ID field of both messages have
to match, and some fields (SOF, EOF, and IFS) have a fixed
format while other fields (CRC and ACK) are generated by
the controller hardware automatically.

The success of the attack depends on the adversary’s ability
to synchronize roughly 16 transmissions of the victim ID with
a guaranteed unique preceded message. We revisit discussion
of the existence and effectiveness of these preceded messages
in Section II-D. However, some of these messages could
be skipped or may require more than 16 transmissions if
the victim ECU sends multiple message IDs. (Successful
transmission of other messages from the same CAN controller
on the ECU would decrease the TEC, thereby lengthening the
attack success time.)

2

𝑀𝑣 Victim message instances Other message instances

time

CAN bus

𝑀𝑣 𝑀1 𝑀2 𝑀𝑣 𝑀3 𝑀4𝑀𝑣 𝑀𝑣𝑀5 𝑀6 𝑀𝑣 𝑀7 𝑀8 𝑀𝑣 𝑀9 𝑀𝑣

Victim node’s perspective

30 40 50 600 10 2013 36 44 53

Fig. 2: Example of CAN schedule. The victim message shown
in light gray is preceded by idle time and seven different
messages in a hyperperiod.

D. Motivation for the Schedule-Based Attack

To succeed in the traditional bus-off attack [8], the victim
and attack messages must be synchronized, as specified by
condition (ii) (see Section II-C). This condition is generally
met by identifying a unique message that precedes the victim
and is used to synchronize the victim and attack messages.
The synchronization is accomplished by enqueueing the attack
message Ma when the victim message Mv is expected to en-
counter blocking (from a preceded message of lower priority)
or interference (from one or multiple higher-priority preceded
messages): because of the blocking or interference, Ma and
Mv will arbitrate and transmit synchronously.

Since a software-based attacker can only observe the com-
pletion of messages, the attacker watches for when the iden-
tified preceded ID finishes transmission and enqueues Ma

before the arbitration phase for the victim message begins.
However, when no unique preceded ID can be identified, it
becomes more challenging to predict the arrival of the victim
message and launch the attack.

For example, consider the hyperperiod of the schedule
depicted in Figure 2 consisting of ten periodic messages. The
victim message has a period of Pv = 10 and the remaining
seven messages have a period of 70. During the hyperperiod,
7 instances of Mv are released. As it can be seen in this
example, five of the instances of the victim message are
preceded with five distinct message instances (in this example,
by M2,M3,M5,M6, and M8 and two message instances have
no preceded message (the first and the last messages of Mv).
Since the preceding message IDs are unique, the attack model
introduced by Cho and Shin [8] can, at best, target only one
of the instances of the victim message and hence their bus-
off attack will fail because then only one attack message can
be injected in a hyperperiod and the remaining six instances
of Mv will therefore still transmit successfully and decrement
the TEC to 0 before the next injection of the attack message
(which occurs in the next hyperperiod).

To overcome this challenge, Cho and Shin [8] elaborated on
how to fabricate and inject unique preceded IDs on the CAN
bus to interfere with the transmission of Mv . To succeed in
mounting the bus-off attack with this approach, an adversary
fabricates messages to synchronize its transmission timing
and inject the message right before the target message. Their
evaluation shows that one injection of fabricated preceded ID
message per attack can be sufficient for a bus-off attack. This

1

2

3

4

5

6
7

8

9

10

11

12
13141516

17
23

Messages with unique Preceded ID
Messages with 2 to 5 Preceded IDs
Messages with 6 to 10 Preceded IDs
Messages with 11 to 15 preceded IDs

Message with 16 preceded IDs
Message with 17 preceded IDs
Message with 23 preceded IDs

Fig. 3: Real CAN Traffic: 34 out of 45 message IDs have non-
unique preceded IDs. The size of each slice represents the
number of messages having the labeled number of different
preceded IDs in a hyperperiod.

approach requires that the adversary chooses an acceptable
value for the ID field of the fabricated message. By peri-
odically sending fabricated attack messages, the bus load is
artificially inflated prior to the beginning of the attack, and
may be a detectable feature that intrusion detection systems
can use to mitigate the bus-off attack. For this approach to
work well requires the attacker to know the available bus
idle times and fraction of available bandwidth, hence would
itself require the kind of schedule-based reverse engineering
necessary for our work while still potentially leading to the
bus going into overload or causing lower priority messages to
miss their deadlines.

The schedule-based bus-off attack does not rely on the
uniqueness of the preceded ID to achieve the message synchro-
nization required by condition (ii). Namely, a CAN message
can be a target of a schedule-based bus-off attack even if
messages preceding its transmissions are not of the same ID
every time. By relaxing this requirement, it becomes possible
to launch an attack on any instance of the victim message with
which an attack message can be synchronized.

We show that with a schedule-based bus-off attack, an
opportunity to attack appears for any instance of the victim
message that incurs blocking or interference, regardless of the
message causing it. For example, in Figure 2, although Mv

does not have a unique preceded ID, its instances can be a
target of a schedule-based bus-off attack as they encounter
interference from other CAN messages.

To identify those instances of a victim message that the ad-
versary can synchronize the attack message with, the adversary
observes the CAN bus to gain knowledge about the message
sets prior to launching the attack. Such knowledge includes the
sequence of distinct message instance transmissions including
their IDs and completion times. The attacker can leverage
this information to identify opportunities that can result in
a successful synchronization of the attack message with the
victim message.

To see the prevalence of messages with non-unique pre-
ceded IDs in real vehicle data, we analyzed a real CAN

3

TABLE I Summary of Notations

Variable Definition
M Set of Messages M = (M1,M2, ...,Mn)
Mi Message with ID i, where 1 ≤ i ≤ n

Mi,k The kth instance of Mi

Pi Period of Mi

Ci Transmission time of Mi

Ji Jitter of Mi

ui Utilization of Mi

U System utilization
φi Offset of Mi

Ti,k Completion time of Mi,k

Ma Attack message
v ID of victim message

Mv,x Instance x of the victim message to be attacked

traffic data set that was captured for approximately 30 minutes
through the OBD-II port [9]. The data set contains 2,369,868
attack-free messages from 45 distinct IDs. Figure 3 shows
the breakdown of the ratio of message IDs with different
numbers of preceded IDs. Eleven message IDs have a unique
preceded ID, while the other 34 message IDs have between
2 and 23 distinct preceded IDs. In our analysis, 10 messages
in total have two to five preceded IDs, 14 messages have six
to ten preceded IDs, 7 message IDs have between 11 to 15
preceded message IDs, and finally, the three remaining IDs in
the message set each have 16, 17, and 23 non-unique preceded
IDs. Thus, more IDs may be vulnerable to the schedule-based
bus-off attack than to the traditional bus-off attack relying on
preceded messages.

III. SYSTEM AND THREAT MODELS

In this section, we present the CAN timing model and how
it is favorable for schedule-based attacks. We also discuss the
capabilities and objectives of the adversary.

A. System Model

We consider a CAN bus with a (ordered) set M =
{M1, . . . ,Mn} of n periodic messages and a hyperperiod h
that is the least-common multiple of their periods. Without
loss of generality, every message Mi ∈ M has ID i equal
to its priority and is characterized by its period Pi, worst-
case transmission time Ci, and maximum jitter Ji. A message
Mi produces multiple message instances during the lifetime
of the system. ni = h/Pi is the number of instances of
Mi in one hyperperiod. We enumerate those instances as
Mi,k ∈ {Mi,1, . . . ,Mi,ni

}. We denote the total bus utilization
as U =

∑n
i=1

Ci

Pi
. The notation is summarized in Table I.

Because the CAN bus is a broadcast system, the adversary
can compute Ci, and also record the ID and the frequency
of the messages in transmission. However, delays incurred
inside an ECU prior to transmission are unknown to CAN
observers. For example, as shown in Figure 4, in addition to
Ji, messages may incur other queuing delays such as blocking
and interference. Blocking is the delay encountered when a

9 10 11 13 14 15 16 18 19 22 25 30 31 CAN

Node i

Observation window

0

Logical time
(w.r.t. the beginning
of the observation)

15 20 23 26

Queuing Jitter
Message Mi,k

Messages with higher-priority than Mi

Other CAN messages (with high or lower priority)
Messages with lower-priority than Mi

Bus is idle

30

5 8

40 44 45
BlockingLocal time at

the beginning of
the observation

window

Ji

Mi,1 Mi,2 Mi,3

Interference

Fig. 4: CAN Timing Model.

message must wait for another lower-priority message to com-
plete transmission before attempting to transmit. Interference
refers to the time a message must wait while messages of
higher priority transmit. Tindell et al. [10] and Davis et al. [5]
provide a model used to estimate the value of the queuing
delays for a set of CAN bus messages.

In a typical safety-critical system, nodes related to safety-
critical functionality have the highest priority and are sent the
most frequently. This work does not put assumptions for the
priority ordering and deadline of the messages transmitted on
the CAN bus.

B. Threat Model

In this paper we assume an adversary that can use a software
application to control an ECU that is communicating in the
bus by exploiting a vulnerability. Here, the control of one ECU
limits the impact the attacker may have on the vehicle, as
they can only manipulate that ECU’s behavior. For example,
if the attacker’s goal is (say) to crash the car, then the control
of the Wi-Fi or cellular connection of the vehicle is not that
helpful, but if the cellular connection ECU is on the CAN
bus or connected through the gateway, then the attacker can
use that foothold to achieve its goal [11] by causing safety-
critical ECUs to go into the bus-off state. We do not examine
how the adversary gained control of the ECU as this has been
thoroughly demonstrated [3,12], but we assume that access is
gained remotely, as described in prior work [1,3,8,12,13].

We assume that the attacker has supervisor mode access
and is able to read/write the message buffers (used to enqueue
transmissions and read received messages) and the configura-
tion registers of the CAN controller, which includes message
acceptance filters. Similar to prior work in this area [1,3,8,14]–
[16], we also assume that the attacker can inject any data
frame on the CAN bus and modify the acceptance filters of the
compromised ECU through software commands to eavesdrop
on the CAN bus traffic [8].

With the given capabilities, the adversary can collect logs
of messages sent through the CAN bus, and analyze the log to
understand the schedule of messages sent through the network.
Based on this analysis, the attacker will be able to launch an
attack on a particular message ID, called the victim message
hereafter.

4

It is feasible and typical to assume that an attacker knows
the make, model, or even trim of the target automobile,
and can analyze it offline to derive the message parameters,
i.e., their IDs, and relationship between data payloads and
functionality. Partial schedule knowledge is possible because
of the dependencies between some messages (i.e., receipt of
certain messages cause the transmission of others). Problem-
atically, the vehicle system comprises complex, distributed,
independently functioning ECUs, and therefore the schedule
of messages and their functionality cannot typically be deter-
mined statically [17]. Also, uncertainty introduced by jitter,
non-deterministic startup times, and physical effects caused
by clock drift and power fluctuation make it impossible to
reconstruct one precise system schedule offline.

The goal of the attacker is to send a predetermined node to
the bus-off state by increasing its TEC to 255. To achieve
this, the adversary enqueues attack messages (denoted as
Ma) at predefined times to transmit at the same time as the
transmission of a specific victim message (denoted as Mv).

We also suppose that the adversary aims to cause the least
disturbance (i.e., missed deadlines) to the CAN bus. Akesson
et al. [4] show that an overwhelming majority of systems have
a mechanism in place to respond (e.g., reporting the event,
rebooting the system, and restarting the task) in case of a
missed deadline. In addition, intrusion detection systems may
be triggered in such situations [18,19]. Thus, the adversary’s
aim is to succeed in the attack with the minimum number
of message injections to reduce perturbing the behavior of
non-victim message transmissions, by transmitting the attack
messages only on the instances of the victim when the chance
of a successful message injection is high, and using a sequence
of instances which result in increasing the TEC of the victim
in the shortest time frame.

IV. THE SCHEDULE-BASED ATTACK

The schedule-based attacker aims to drive a target node to
bus-off state, as in the work of Cho and Shin [8]. However,
it fundamentally differs from the previous approach in the
following ways:
• a1: the attacker does not fabricate preceded IDs;
• a2: the attacker does not rely on the uniqueness of

preceded IDs.
To satisfy a1, the adversary must only rely on normal

message transmissions to synchronize the attack message with
the victim. In the original bus-off attack, the adversary simply
observes the bus traffic until the unique preceded ID transmits.
It indicates to the adversary that the following message is
the victim. Thus, instances of Mv that are transmitted after
messages other than the known preceded ID are not exploitable
by the attacker. For a2, the schedule-based attacker can also
make use of those instances to drive the victim node’s TEC
to 255. This increases the number of instances that can be
targeted in a single hyperperiod to “any instance of Mv that
incurs blocking or interference” regardless of the message
causing it.

0

. . .

Attack Pattern
Identification

Schedule
Reconstruction

Schedule Analysis

Periodic
Bounds

Estimates

CAN Trace

ID, DLC,
DATA,

TIMESTAMP Attack Instants

Start of
Observation

Mi High chance
of success

Attack Success/Failure

Schedule Exploitation

Fig. 5: Stages of Schedule-Based Attack in CAN Bus.

To succeed in the schedule-based attack, the adversary needs
to learn when instances of interest are expected (since they
cannot simply rely on the transmission of a particular preceded
ID) and then send Ma at the appropriate time on the bus.
Specifically, the attacker must:

1) examine the sequence in which messages are transmitted
on the bus to estimate message parameters,

2) analyze the sequence to select and locate victim in-
stances of interest in a hyperperiod,

3) identify the first instance of Mv (Mv,n∗
v
) to be attacked

based on the attacker’s strategy,
4) observe the bus and enqueue Ma prior to Mv,n∗

v
arbi-

tration,
5) repeat step 4 for instances of Mv selected in step 2 until

the TEC of the victim node reaches 255.
We refer to these steps as message parameter estimation (step
1), schedule analysis (steps 2 and 3), and schedule exploitation
(steps 4 and 5). The first stage starts once the attacker has
collected message logs to estimate the parameters, such as the
message periods and instances. In the next stage, the adversary
records the beginning and compositions of successive message
transmissions ending with the transmission of an instance
of Mv . Each record indicates a potential time at which the
adversary can inject an attack message during the following
hyperperiod. It also specifies the priority of the message(s)
preceding a particular instance of the victim. The adversary
selects records that satisfy the attack strategy (as described
in section III-B) from which Mv,n∗

v
is identified. In the

exploitation stage, the adversary uses the noted time related
to the arrival of Mv,n∗

v
to anticipate its arrival. Once Mv,n∗

v
is

expected to arbitrate, the adversary enqueues Ma to transmit
with Mv,n∗

v
and the remaining victim message instances that

are of interest and identified in stage 2.
Figure 5 shows these different stages of the CAN schedule-

based bus-off attack. In the following subsections, we describe
these stages in further detail.

A. Message Parameter Estimation

Olufowobi et al. [6,7] have shown that a greedy algorithm
can be used to reverse engineer (estimate) parameters of a
set of periodic messages, such as the message period and
jitter, from a CAN log file. Their work focuses on using these
parameters to tune a specification-based IDS.

Our algorithm takes as input a CAN log and message
ID i and returns as output the period estimate Pi. This
approach follows the period estimation algorithm introduced

5

by Olufowobi et al. [6] with a slight modification to assume
that a period is estimated when the difference between the
upper and lower bound is less than the transmission time of
a single bit. Specifically, for each transmission of Mi, the
period estimation algorithm infers period bounds at which each
message could occur by reasoning backward in the steps the
message will go through before transmission. By taking into
consideration the factors contributing to the message response
time as well as completion time of successive instances of Mi,
the algorithm tightens the bounds on the Pi.

Once the period of each message is estimated, the attacker
can calculate the hyperperiod, i.e., the least common multi-
ple of the periods. It is worth noting that since the period
estimation step requires observing at least two instances of
a message, the time at which it completes the calculation of
periods will be larger than the offset of any individual message.
Consequently, in any observation window of length h, the
attacker will see h/Pi message instances of a message Mi,
regardless of the start time of the observation window.

B. Schedule Analysis

As described in Section III-B, to succeed in the bus-off
attack, the adversary intends to launch the schedule-based
attack using the victim message instances which ensure that
the attack message will be transmitted at the same time as
the victim message. Such an assurance is provided by the
adversary’s ability to enqueue the attack message right before
the victim message, during the transmission of the message(s)
preceding the victim. In this stage of the schedule-based attack,
the adversary identifies all those transmissions, when they will
occur in the future and how they can be used to implement
the attacker’s strategy.

Definition 1: An attack pattern is a pattern that describes a
sequence of message transmission(s) ending with a transmis-
sion of an instance of the victim message.

In the schedule-based attack, attack patterns can be repre-
sented as a regular expression on a language whose alphabets
are α = {H,L, V,O}, where H and L are symbols that
represent any message ID with a higher-priority and lower-
priority than the victim, V represents the victim message, and
O represents any other message type or state of the bus (e.g.,
idle state, or error messages). Knowing the victim message ID
enables the attacker to directly translate the status of the bus
to any of the symbols in the alphabet.

Example 1: Consider an attacker that wants to perform a
bus-off attack on M1 in the example shown in Figure 6. The
attacker’s goal is to send its attack message (which has the
same priority as the victim message) at the time that the victim
message appears on the CAN bus.

The following regular expressions can be used to represent
three attack patterns: (i) 〈{H}+V 〉, where {H}+ represents
any non-empty sequence of higher-priority messages that
precede a message of M1 (the victim message) without any
idle time in between, (ii) 〈L V 〉, where L is any lower-priority
message than the victim message that immediately precedes
the victim message, and (iii) 〈O V 〉, i.e., the bus was idle

M1

M2

M3

CAN
Bus

M1,1 M2,1 M3,1 M1,2 M1,3 M2,2 M1,4

s1,1 s2,1 s3,1 s1,2 s1,3 s2,2 s1,4

1

3

4

Fig. 6: CAN Schedule with three message IDs.

(or occupied by messages other than H and L types) prior to
the transmission of the victim message. Every instance of a
message will be subject to one and only one of these three
attack patterns (because the alphabet defined for the regular
expressions partition all four types of messages).

For pattern (i), the attacker can send its message anytime
in the interval from the start of the sequence of higher-
priority messages until the moment immediately before the
victim starts arbitration. Hence, the attacker has a higher attack
surface in this case. The attack surface for pattern (ii) is shorter
because it is at most as long as the transmission time of a
lower-priority message that precedes the victim. Finally, we
assume that the attack surface in the last case is 0, i.e., the
attacker can be successful only if it sends its message exactly
at the time the victim sends its message. Hence, in terms of
success when there are uncertainties in the system, the attacker
would be more successful in case (i) than in case (ii) and (iii).

In the rest of this section, we focus on how attack patterns
are used as the basis for the schedule-based attack. First we
explain how attack patterns are identified in the schedule
(Sec. IV-B1). Next, we describe how to find a robust set of
attack moments (that increase the chance of a successful victim
prediction) by proposing four heuristic methods (Sec. IV-B2)
Finally, we discuss how to locate the best attack patterns to
satisfy the adversary’s strategy as well as Mv,n∗

v
(Sec. IV-B3).

1) Identifying Attack Patterns: The attacker starts a timer
right after it obtains the length of the hyperperiod and then
observes messages being transmitted on the bus. It categorizes
each observed message ID into H , L, or V and checks its
observations against the attack pattern types. As soon as it
spots an attack pattern, it calculates the potential start time
and end time of the attack for the next hyperperiod to come.
Note that this attack does not require the nodes to be time
synchronized (messages can have any arbitrary offset). The
attacker only needs to know the length of a hyperperiod. The
example below explains how the attacker works.

Example 2. Consider the attack patterns used in the pre-
vious example and the system shown in Figure 6. Let us
assume that the attacker starts observing the schedule at time
tinit = 100 and the first message it sees is M2,1, i.e., the
attacker does not see the beginning of the hyperperiod. The
attacker keeps track of the lower- and higher-priority messages
that it observes on the bus using two counters: tl and th. These
counters store the start time of the transmission of a message
with a higher and lower priority than M1, respectively.

6

The attacker updates the counters as soon as it sees mes-
sages matching the counter description, i.e., a higher or lower
priority message. For example, at time s2,1, tl is updated by
storing the start time of M2 as a relative time w.r.t. tinit
(i.e., tl ← 0). When the attacker observes another low-priority
message (M3), it updates tl ← C2 to point to the start time
of M3 w.r.t. tinit. As soon as the attacker observes M1, it
stores the current value of tl (since a lower-priority message
was transmitted prior to M1) in its attack-pattern table as a
potential attack opportunity which must start exactly at time
tinit + h+ C2. The high-priority counter th is updated when
a higher-priority message than M1 is observed, but it will not
be updated when another high-priority message is on the bus
(to match pattern (i)). Both counters are invalidated as soon as
the bus becomes idle. In this example, by the time tinit + h,
the attacker has already identified one window to perform the
attack, i.e., using pattern (ii) at time tinit + h+ C2.

We summarize the approach in Algorithm 1. Algorithm 1
is an online algorithm that processes the hyperperiod and for
each instance of the victim message, stores the type of attack
and the attack surface (starting moment and ending moment
of a successful attack to that message in that hyperperiod).
This algorithm produces a list ∆ = 〈δ1, δ2, . . . , δnv 〉 of the
attack opportunities that happens for each of the nv = h/Pv

message instances of message Mv in the observed hyper-
period. Each item δk ∈ ∆ is a tuple δk = ([sk, ek], θk)
that describes the attack type (θk ∈ {T1, T2, T3}) and the
attack surface (i.e., [sk, ek]) that appeared in the observed
hyperperiod before the kth message instance of message Mv .
For example, in Figure 6, when M2 is the victim message, we
have ∆ = 〈([s1,1, s2,1], T1), ([s1,3, s2,2], T1)〉.

This algorithm uses th and tl timers to keep track of the
latest observed high- and low-priority messages on the bus,
respectively. Because the adversary has configured the filters
of the attack node to receive all CAN messages transmitted,
the contents of the messages can be retrieved at the attack
node. Thus, every time a message completes transmission,
the attacker reads its ID i and compute the start time and
end time of its transmission on the bus, denoted by ti and
te, respectively (lines 4-6). Using ti and the completion time
of the previous message received before Mi, the attacker
determines whether the bus was idle before Mi, and invalidates
th and tl if true (lines 7-8). Otherwise, th and tl are updated
based on the priority of Mi as follows (line 10-21):
• Mi has a lower priority than Mv: ti represents the

beginning of the transmission time of a lower-priority
message (and potentially, the beginning of a type (ii)
attack pattern). Thus, th is invalidated and tl ← ti
(line 11).

• Mi has a higher priority than Mv: in this case, if th
is valid, i.e., the previous message(s) received had also
a higher priority than the victim, no change to th is
necessary. In other words, the sequence of high-priority
messages that has started with the previous higher-priority
message(s) can be continued (to possibly form a type (i)
attack pattern), and its start time remains the same. If, on

Algorithm 1 [online] Identification of Attack Patterns
Inputs: h, v
Outputs: ∆

1: tl ← −∞, th ← −∞
2: ∆← 〈〉
3: while length of observation window ≤ h do
4: i← the latest observed message ID
5: ti ← the start time of transmission of message i
6: te ← the end time of transmission of message i
7: if bus is idle then
8: th ← −∞, tl ← −∞
9: else

10: if i is lower priority than v then
11: tl ← ti, th ← −∞
12: else if i is higher priority than v and (th < 0) then
13: th ← ti, tl ← −∞
14: if (i = v) then
15: if (th ≥ 0) then
16: append ([th, te], T1) to ∆
17: else if (tl ≥ 0) then
18: append ([tl, te], T2) to ∆
19: else
20: append ([te, te], T3) to ∆

21: tl ← −∞, th ← −∞
22: return ∆

the other hand, th is not set yet, then th ← ti to indicate
that a new potential attack pattern has started (line 13).

When i = v (i.e., the message received is an instance of the
victim message), the algorithm appends one attack opportunity
to the final output ∆ depending on the type of attack (type
(i), (ii), or (iii)). If the attack is not type (i) or (ii), then it
is categorized as type (iii) with an attack surface with zero
length, i.e., from [te, te] (line 20). After storing the attack,
both timers th and tl are reset (line 21).

2) Dealing with Uncertainties: Although Algorithm 1
produces the list ∆ that include potential attack instants, the
attack’s success can be affected if there are uncertainties in
the start time and transmission time of messages on the bus
for the future hyperperiods. To address this challenge, we
propose to obtain statistically robust attack opportunities (and
attack surface) by observing the schedule over N hyperperiods
(instead of one), identify attack patterns for each hyperperiod,
and extract attack opportunities that repeated more frequently
(and hence are more robust to uncertainties). In this paper,
we propose three statistical methods to obtain a robust set
of attack opportunities per message instance of the victim
message, i.e., per Mv,k. The output of this step, denoted by
φ = (φ1, φ2, . . . , φnv

), where φk is a robust start time for
an attack on the kth instance of the victim message. Since
the time values stored in φ are relative w.r.t. one observation
window with length h, the attacker can reuse them every h
units of time to continue performing an attack over multiple
hyperperiods in the future.

7

To explain our three methods, we use a superscribe i
(1 ≤ i ≤ N) for ∆, i.e., ∆i, to represent the attack opportunity
vector obtained from Algorithm 1 during the ith observed
hyperperiod. For simplicity, we use the superscript i to refer
to the relevant data in the attack opportunity vector ∆i too.

Method 1: Average Starting Time. For each attack op-
portunity identified by Algorithm 1, we compute the average
starting time of that attack opportunity over N hyperperiods
(regardless of the attack types). Hence, the final attack moment
for the kth instance of the victim message will be

φk =
1

N

N∑
i=1

sik. (1)

Method 2: Intersection of Transmission Times. In this
method, regardless of the attack type, we calculate the intersec-
tion between the attack surfaces obtained over N hyperperiods
for the kth instance of the victim message as follows

φk = max{sik}∀i. (2)

In this method, if the interval Ik (see below) is empty,
namely, there is no intersection between the attack surfaces
of the N observations, then the attacker will not consider
attacking that instance of the victim message and will treat
that instance as an attack type (iii) (with zero attack surface).
Ik is obtained as follows Ik = [max{sik}∀i , min{eik}∀i].

Method 3: Average of Mid-Transmission Times. In this
method, for each attack pattern of victim instance k, we com-
pute the midpoint of the transmission time for the preceding
message(s) in the attack pattern. Then the average of is taken
over the N hyperperiods observed (regardless of variations in
the attack types) as follows:

φk =
1

2N

N∑
i=1

(eik − sik). (3)

In Section V-C3 we demonstrate that method 3 allows the
attacker to predict the arrival of attack opportunities over a
longer period of time. Thus, using the list of robust attack
opportunities, the attacker can select which victim instance
n∗v (and consequently, which attack opportunity) to start the
attack from.

3) Identifying Mv,n∗
v
: One of the strengths of the schedule-

based attack is that it allows the adversary to develop the attack
based on the robust attack opportunities generated. Moreover,
when many attack opportunities exist in the schedule, the
adversary can choose the approach that has the highest chance
to result in a successful attack. For example, the adversary
can choose to only use attack patterns that have never been
classified as type (iii) during the N hyperperiods analyzed.

In this case, as described in Sec. III-B, the adversary wants
to launch the attack on the Mv instances that can be synchro-
nized with (in a robust way) to minimize bus disturbances
while increasing the victim ECU’s TEC to 255 very quickly.
The shortest possible attack requires that the adversary uses
consecutive instances so as to prevent the victim node from
decrementing its TEC due to successful transmissions. Thus,

Algorithm 2 Identifying n∗v
Inputs: ∆̄ = (∆1, . . . ,∆N), h, v
Outputs: nv∗

1: nv ← h/Pv

2: n∗v ← 1, i← 1
3: maxcount← 0
4: while i ≤ nv do
5: j ← i, count← 1
6: while count ≤ nv do
7: if j > nv then
8: j ← 1

9: if @θyj (for 1 ≤ y ≤ N) ∧ θyj = T3 then
10: count← count+ 1, j ← j + 1
11: else
12: if count > maxcount then
13: maxcount← count, n∗v ← j
14: break
15: i← i+ 1

16: return n∗v

to decrease the attack time, the adversary should identify
sufficiently long sequences of attack opportunities in ∆ with
no type (iii) attack patterns and launch the attack from the first
element n∗v of that sequence.

We describe the process of finding n∗v in Algorithm 2. We
start by selecting an instance of the victim message in ∆ and
counting the number of type (i) or type (ii) attack patterns
starting from that element in ∆ until a type (iii) pattern is
identified (lines 6 - 11). If the total number of patterns counted
is the maximum obtained thus far, it is recorded along with
the position of the attack opportunity from which the count
has started as nv∗ (line 13).

Once the attack opportunity n∗v is known, the attacker needs
to predict when that particular attack pattern will contend for
the bus in order to schedule the first attack message at the
right time. Each of the three methods can provide one such
start time for the attack opportunity on the message instance
n∗v (i.e., by using the value φn∗

v
). Further details of this step

will be discussed in the next section.

C. Schedule Exploitation

The attack starts by observing the CAN bus traffic until
the time indicated by φn∗

v
when Ma is queued to arbitrate

with Mv . Then the attacker follows its pre-calculated vector
of attack opportunities (i.e., φ) to continue injecting Ma until
the victim’s TEC reaches 255. Note that the times stored
in φ are relative to the start time of the first observation
window. The attacker needs to adjust these values by h units
of time whenever it reaches a new full cycle of nv messages
to continue its attack over multiple hyperperiods.

The success in the exploitation stage depends on how
robustly the attack framework can withstand inaccuracies
in message parameter estimations, jitter, message ordering.

8

and sporadic messages transmission. We briefly discuss their
impact on the schedule-based attack.

Period Estimation Inaccuracies. Period estimation inaccu-
racies may lead to an error in the message sequence and hence
even change the attack patterns. For example, when the period
of a message Mi is underestimated by 10%, it leads to a false
expectation of an additional transmission of Mi after every
nine genuine transmissions of Mi. This error also inaccurately
inflates the number of messages in a hyperperiod, and possibly
the value of nv = h/Pv . Finally, such an inaccuracy in the
period estimation may result in an erroneous value for the
system’s hyperperiod.

DLC and Transmission Time. Increase in a preceded ID’s
DLC (although rare) from an expected value may decrease the
amount of time available to the attacker after the transmission
of Mv to retransmit the sixteen messages in order to reach a
high value of TEC and bus-off state.

Message Jitter and Message Ordering. Jitter can cause
the order of messages in the CAN schedule to vary by
introducing unexpected interference or blocking. Because of
jitters, a message in a previously observed attack pattern may
get transmitted later than its expected time. This can affect
the order of the victim message and therefore lead to a failed
prediction despite the statistical robustness of our methods to
obtain the starting point of the attack.

Sporadic Messages: Messages not belonging to the peri-
odic message set are considered sporadic messages when they
transmit. Since they start when the bus is idle, even if they
appear right before an instance of the victim message, our
solution would not be impacted because we do not consider
attacking instances of the victim message that are sent when
the bus is idle. However, if the sporadic messages push a
set of periodic messages, they may eventually change the
sequence of messages sent on the bus. Our current solution
relies only on fidelity of the observations we made during N
hyperperiods. If the sporadic messages do not frequently show
up in that observation window, then the accuracy of our attack
will reduce eventually.

V. EVALUATION

We have performed experiments to answer the following
questions: (i) How accurate is our approach to estimating the
period of CAN messages? (ii) How accurate is our solution
in predicting the arrival of a victim message? (iii) How
vulnerable is a CAN system to a schedule-based bus-off
attack. We address the first question in Section V-C1. Question
(ii) is evaluated in Section V-C2 using a set of random
schedules and random victim messages to estimate the number
of cases that result in an accurate schedule-based prediction. In
Section V-C3 we compare our approach with the traditional
bus-off attack approach. We evaluate the feasibility of each
stage of the schedule-based attack with these experiments.

A. Experimental Setup

We used a software-only simulation of CAN and a real CAN
dataset. Software for our setup is freely available1. The code
is written in Python 3 on a computer with Ubuntu 18.04.5 LTS
operating system, Intel Core i7-9700K CPU @ 3.60 GHz and
32 GB RAM

1) Simulator for Synthetic CAN Traces Generation: The
software simulation uses CAN traces—real traces were col-
lected from vehicles, and synthetic traces created using a
custom Python trace generator.

We used a discrete-event simulation to generate the CAN
logs. By examining the expected behavior of the CAN message
protocol, we analyze the different states a message will go
through before it can be transmitted on the bus. The three
possible states for a message are pending, active, and the
transmission state. The pending state represents the initial state
of the message before it is released into the active queue. In the
active state, the messages go through the arbitration process
before they can transmit. If a message wins the arbitration, the
message is moved into the transmission queue for processing.
In conformity with the CAN protocol, only one message
can occupy the transmission queue at a time, and message
preemption is not allowed in the transmission queue. The
messages’ transmission times are computed from the data
length code according to analysis in [5]. The completion
time of the message transmissions scheduled through the
transmission queue is recorded and denoted as the message
trace timestamps.

B. Datasets

1) Synthetic Dataset Description: We assume that the rel-
ative deadline of each message instance is equal to its period,
and priorities have been assigned based on the message ID
as explained in II-A. Messages coming through to the active
queue are guaranteed to be schedulable by the fixed-priority
non-preemptive scheduling algorithm of the CAN bus. We
simulate 50,000 ms to generate simulated data.

2) Real CAN Dataset Description: To evaluate the perfor-
mance of our proposed schedule based attack, we used real
vehicle CAN traffic captured for 30 to 40 minutes through
the OBD-II port [9,20]. The datasets recorded are of normal
vehicle operation and we used the Attack free data sets which
has 988, 987 number of messages.

C. Experiments

1) Period Estimation with Uncertainty: The first experi-
ment examines the accuracy of period estimation. We use the
software simulation to explore the parameter space, we created
408 schedules by varying the number of messages and their
parameters (period, data size, jitter, phase).

We created 17 message sets by varying the number of
unique periodic messages from 10 to 40 and assigning har-
monic periods to each message uniformly at random from the
16 divisors of 1000 ms (i.e., 1, 2, 4, 5, 8, 10, 20, 25, 40,

1https://github.com/Embedded-Systems-Security-Lab/sba-in-can/tree/rtss21

9

(a) Accuracy versus Number of Observable Message IDs (b) Relative Accuracy versus Priority

Fig. 7: Accuracy of period estimation with and without jitter or phase.

50, 100, 125, 200, 250, 500, and 1000 ms). For each message
set, we generate one schedule with no jitter and no offsets
(i.e., simultaneous release at time 0), and 204 schedules by
generating initial offsets (phase) at random from the uniform
distribution over [[0,100000]] µs for each message in the
set and jitter at random from the uniform distribution over
[[0, 50]] µs for each message transmission. Thus, we created
204 schedules without jitter or phase, and 204 schedules with
random phases and jitter. The former are used to demonstrate
idealized behavior in the lack of uncertainty. We then attempt
to estimate the message parameters of each schedule varying
the number of messages (IDs) that can be observed from all
messages to just 1 message to evaluate the affect of acceptance
filters. We measured the accuracy of each reconstruction
compared to the ground truth of its message set. The results
in Figure 7 shows a high accuracy over 99%.

2) Schedule Prediction with Uncertainties: In this exper-
iment we compare across the prediction heuristics described
in Section IV-B2. We used the synthetic data to evaluate how
practical the proposed prediction mechanism is by examining
how many periods occur between the average time from the
starting observation point to attack. We set to find out for
how many periods we can accurately predict the arrival of
a particular instance of the victim message. We also studied
whether the accuracy of the prediction could be improved by
increasing the number of hyperperiods (N) used in computing
the predicted arrival in the subsequent hyperperiods.

Figure 8 shows the results obtained using the Average
Starting Time (Method 1), the Intersection of Transmission
Times (Method 2), and the Average of Mid-transmission Times
(Method 3). For Method 1, we observe that as N increases,
the number of hyperperiods for which the victim’s arrival was
accurately predicted gradually decreased from 21 hyperperiods
for N = 1 to 16 hyperperiods for N = 10. Thus, the
average starting times for the attack pattern becomes less
accurate as N increases. In contrast, Methods 2 and 3 are less
impacted by N . However, using Method 2 allows accurately
predicting 21 hyperperiods while with Method 3 the adversary

Fig. 8: Schedule Prediction

can accurately predict the arrival of the attack pattern for about
35 hyperperiods. Thus, of all three heuristics, Method 3 has
the highest performance and provides the adversary with the
best chance to succeed in the attack.

3) Case Study: SAE Benchmark: We developed a case study
to further demonstrate the schedule-based attack approach
using the modified SAE benchmark described by Tindell
et al. [10]. This benchtop case study was performed on
hardware representative of realistic ECUs on a live CAN
bus. The benchmark includes both periodic and aperiodic
tasks. Table II shows the parameters for the benchmark. The
original benchmark is not specified for CAN, so we assign
message priorities rate monotonically, with the exception of
the sporadic messages, with ties broken by arbitrary ECU
prioritization.

We implemented the benchmark using off-the-shelf hard-
ware and in-house software2. The platform includes five

2https://github.com/gedare/tm4c129-canbus/tree/rtss21

10

TABLE II Modified SAE Benchmark. Type denotes periodic
(P) or sporadic (S), with sporadic messages having a minimum
interarrival time (IAT) in lieu of a period.

Sender ID (hex) Size (B) Type Period/IAT (ms)

VC
A0 1 P 5
B0 6 P 10
D0 1 P 1000

Brakes A1 2 P 5
B9 1 S 100
C1 1 P 100

Battery
99 1 S 1000
B2 1 P 10
C2 4 P 100
D2 3 P 1000

Driver A3 1 P 5
B3 2 P 10

IMC A4 2 P 5
B4 2 P 10

Trans
A5 1 P 5
C5 1 P 100
D5 1 P 1000

Fig. 9: Experimental Setup for SAE Benchmark Case Study

microcontrollers with hardware CAN controllers connected
to 3.3v CAN transceivers that interface via a breadboard
(see Figure 9). We ran the bus at 125 kbps, for which
this benchmark has approximately 80% bus utilization. Note
that when the subsystems synchronize with each other, every
message except A0 has at least one genuine preceded ID. In
general, they do not synchronize with each other except by
happenstance. We simulate jitter in this setup by delaying
transmission of messages by a small number of processor
clock ticks (0-255) that introduces between 8 ns and 2 µs
of jitter, which varies cyclically and relatively unpredictably
throughout execution.

The Battery ECU is instrumented to be the attacker, and
the Brakes ECU is targeted as the victim. The other ECUs
just generate bus load and cause interference/blocking. We
conducted the original bus-off attack with periodic synchro-
nization as in prior work [8], and the schedule-based attack

TABLE III SAE Benchmark Case Study Results. The
schedule-based attack (SBA) we introduce is evaluated with
N hyperperiods for Schedule Analysis. We report the average
number of attack message transmissions (Ma Avg Tx) and
the success rate as the percent of the 50 attack trials that
put the victim into the bus-off state. Each trial lasts for 10
hyperperiods.

Attack Method Ma Avg Tx Success Rate
Periodic 1,998.7 76%
SBA N = 1 278.4 80%
SBA Avg, N = 2 371.4 84%
SBA Avg, N = 4 80.9 36%

using Algorithm 1 for 1, 2, and 4 hyperperiods. For the trials
using multiple hyperperiods we have used method 3 (average
of mid-transmission times) to aggregate measurements across
the hyperperiods. If any of the victim message instances
are suspected to be preceded by an idle bus in any of the
hyperperiods, then we do not use that attack opportunity.

Table III shows the results obtained from conducting the
bus-off attacks with 50 attempted trials each lasting for 10
hyperperiods (10 seconds). Although the periodic approach
achieves a reasonable success rate of 76%, it also generates
a lot of extra bus traffic, because it attempts to inject the
attack message at the same frequency as the authentic message.
As mentioned in Sec. II-D, the addition of this much traffic
would be trivially detected by even the simplest CAN intrusion
detection systems. The schedule-based attack (SBA) using just
one hyperperiod to make predictions achieves a better attack
success rate than the periodic approach with many fewer attack
injections, while the use of averaging the midpoint between the
start and end of the preceded message is even more effective.
Unfortunately, the performance drops off as more hyperperiods
are included. We attribute this to the increased likelihood of
encountering bus idle time prior to some victim instances,
which the attack conservatively avoids.

VI. DISCUSSION

The schedule-based attack does not rely on fabricated
messages, achieves a better synchronization (by using attack
patterns), lower detectability (by avoiding transmitting Ma in
idle gaps), and reduced overall attack injection messages.

To perform the attack, the adversary must go through N
hyperperiods and add a time instant for each item in the attack
opportunity list. Only then the attacker can perform an attack
according to any of the attack patterns that it selects (based
on attack pattern type, for example). Hence, the preparation
phase of this attack takes at least N ·h units of time. Although
N is a configuration parameter and can be a reasonable
constant number to reduce the attack overhead, larger N values
can increase the statistical robustness of the solution against
system uncertainties.

Our solution stores one attack opportunity tuple per instance
of the victim message during N hyperperiods. Hence, its

11

memory complexity is in the order of O(nv · N), where
nv = h/Pv is the number of message instances of the
victim message in a hyperperiod. While N is a configuration
parameter and can be a reasonable constant value, nv will
depend on the period of the victim message and the length
of the hyperperiod. In automotive systems, for example, this
can be between one and a thousand message instances. The
response time of our attack is in O(N · h). As said earlier,
here N is a reasonable constant number and h is the length
of the hyperperiod and, for example, in automotive systems
[21] is in the order of a few seconds. This means that a few
seconds (or a minute) after being activated, the attacker can
effectively start the bus-off attack.

Even when some nodes disconnect and reconnect to the
network, the attacker can restart the attack and adjust with
the new changes and after a few minutes, brings the victim
message back to the bus-off mode.

On the negative side, despite using statistical robustness
factor N to deal with system uncertainties, the proposed attack
can still be affected by the uncertainties that have not been
captured during our observation window. This could be the
case when sporadic or aperiodic messages appear on the bus
after the attack starts. Bit stuffing is another example of such
uncertainty: Although the CAN timing model used in this work
accounts for bit stuffing, the message data payloads we used
were constant and therefore changes in transmission times
were not included in the experimental evaluation.

VII. RELATED WORK

Schedule-based attacks. The success of cyberattacks that
depend on a particular ordering between the execution window
of the attacker and its targeted task are called schedule-based
attacks. Nasri et al. [22] introduced a taxonomy of such attacks
and categorized them into four groups (anterior, posterior,
pincer, and concurrent) based on the timing relation that makes
the attack successful. They point out several challenges in
analyzing schedule-based attacks.

Inferring task set parameters. Often, the success of a
schedule-based attack depends on the ability of the attacker
to predict the future schedule and possibly to influence it (so
that it can execute the attack at the right moment). Chen et
al. [23] proposed a parameter inference method for processor
schedulers in a real-time operating system based on hijacking
the idle task. The problem we consider, however, is different
because the attacker can see all message transmissions on
the bus and therefore has access to the actual schedule albeit
delayed by the message transmission times.

Olufowobi et al. [6,7] infer the real-time parameters of
messages on the CAN bus using the worst-case response
time analysis framework for CAN [5,10]. They extract the
timing model of the message schedule to develop an intrusion
detection system. We adapt and improve their approach to
improve estimating the message period in the presence of jitter
and offsets with the goal of launching an attack.

Other techniques such as fast Fourier transform and cir-
cular auto-correlation [24] have also been used to infer a

task’s period from execution traces [25,26]. Together with
Periodogram [27], these techniques have been used to infer
periodicity of a signal [24,27]–[34]. However, none of these
techniques alone provide an accurate period estimate because
they are affected drastically by the presence of preemption,
sporadic or aperiodic tasks, missed jobs, and any uncertainty
in the release and execution time of tasks [35].

Chen et al. [36] have shown a successful case of a schedule-
based attack in which the attacker tries to infer the initial offset
of a strictly periodic task (the victim) in order to predict its
future releases. The work assumes that the attacker is in the
same computer as the victim task, which does not hold in
CAN and hence their solution cannot be applied directly to
this problem.

Defenses against schedule-based attacks. To prevent in-
formation leakage, Völp et al. [37] modified the system’s
schedule by switching the execution of potentially leaky
threads with the idle task. Mohan et al. [38] include security-
oriented directives in the schedule to prevent information
leakage. Schedule randomization techniques have been intro-
duced [39,40] to reduce the success of schedule-based attacks.
However, Nasri et al. [22] showed that regardless of the
granularity of randomization, these techniques are ineffective
against schedule-based attacks and may even increase the
system’s vulnerability.

VIII. CONCLUSION

In this paper we have introduced a novel optimization to
improve the efficiency of the traditional CAN bus-off attack by
leveraging the real-time nature of CAN to design a schedule-
based attack. We have shown that the schedule-based attack
is more widely applicable than the traditional approach that
relies on a unique preceded message.

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in USENIX Security Symposium, vol. 4. San Francisco, 2011, pp. 447–
462.

[2] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive
can networks–practical examples and selected short-term countermea-
sures,” in International Conference on Computer Safety, Reliability, and
Security. Springer, 2008, pp. 235–248.

[3] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in 2010 IEEE Symposium on
Security and Privacy, 2010, pp. 447–462.

[4] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis, “An
empirical survey-based study into industry practice in real-time systems,”
in IEEE Real-Time Systems Symposium (RTSS), 2020.

[5] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (can) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, 2007.

[6] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Saiducant:
Specification-based automotive intrusion detection using controller area
network (can) timing,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 2, pp. 1484–1494, 2019.

[7] H. Olufowobi, G. Bloom, C. Young, and J. Zambreno, “Work-in-
progress: Real-time modeling for intrusion detection in automotive
controller area network,” in 2018 IEEE Real-Time Systems Symposium
(RTSS). IEEE, 2018, pp. 161–164.

12

[8] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks
makes them vulnerable,” in ACM SIGSAC Conference on Computer and
Communications Security, 2016, pp. 1044–1055.

[9] Hacking and C. R. Lab. Car-hacking dataset for the intrusion
detection. [Online]. Available: https://sites.google.com/a/hksecurity.net/
ocslab/Datasets/CAN-intrusion-dataset

[10] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area
network (can) message response times,” Control Engineering Practice,
vol. 3, no. 8, pp. 1163–1169, 1995.

[11] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking tesla from wireless to
can bus,” Briefing, Black Hat USA, vol. 25, pp. 1–16, 2017.

[12] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, p. 91, 2015.

[13] ——, “Adventures in automotive networks and control units,” Def Con,
vol. 21, pp. 260–264, 2013.

[14] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “Simple:
Single-frame based physical layer identification for intrusion detection
and prevention on in-vehicle networks,” in Proceedings of the 35th
Annual Computer Security Applications Conference, 2019, pp. 229–244.

[15] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the clock: emulating clock skew in controller area networks,”
in 2018 ACM/IEEE 9th International Conference on Cyber-Physical
Systems (ICCPS). IEEE, 2018, pp. 32–42.

[16] G. Bloom, “WeepingCAN: A Stealthy CAN Bus-off Attack,” in Work-
shop on Automotive and Autonomous Vehicle Security. Internet Society,
Feb. 2021.

[17] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom,
“Reverse Engineering Controller Area Network Messages using Unsu-
pervised Machine Learning,” IEEE Consumer Electronics Magazine, pp.
1–1, 2020, conference Name: IEEE Consumer Electronics Magazine.

[18] H. Olufowobi, S. Hounsinou, and G. Bloom, “Controller area network
intrusion prevention system leveraging fault recovery,” in Proceedings
of the ACM Workshop on Cyber-Physical Systems Security & Privacy,
2019, pp. 63–73.

[19] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
Automotive Controller Area Network Intrusion Detection Systems,”
IEEE Design Test, vol. 36, no. 6, pp. 48–55, Dec. 2019.

[20] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network
intrusion detection using deep convolutional neural network,” Vehicular
Communications, vol. 21, p. 100198, Jan. 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2214209619302451

[21] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS), 2015.

[22] M. Nasri, T. Chantem, G. Bloom, and R. M. Gerdes, “On the pitfalls
and vulnerabilities of schedule randomization against schedule-based
attacks,” in 2019 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2019, pp. 103–116.

[23] C.-Y. Chen, A. Ghassami, S. Nagy, M.-K. Yoon, S. Mohan, N. Kiyavash,
R. B. Bobba, and R. Pellizzoni, “Schedule-based side-channel attack in
fixed-priority real-time systems,” Tech. Rep., 2015.

[24] J. A. Gubner, Probability and random processes for electrical and
computer engineers. Cambridge University Press, 2006.

[25] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
intrusion detection based on constant can message frequencies across

vehicle driving modes,” in Proceedings of the ACM Workshop on
Automotive Cybersecurity, 2019, pp. 9–14.

[26] S. Liu and W. Yi, “Task parameters analysis in schedule-based timing
side-channel attack,” IEEE Access, vol. 8, pp. 157 103–157 115, 2020.

[27] A. Schuster, “On the investigation of hidden periodicities with appli-
cation to a supposed 26 day period of meteorological phenomena,”
Terrestrial Magnetism, vol. 3, no. 1, pp. 13–41, 1898.

[28] C. Berberidis, W. G. Aref, M. Atallah, I. Vlahavas, and A. K. El-
magarmid, “Multiple and Partial Periodicity Mining in Time Series
Databases,” in European Conference on Artificial Intelligence (ECAI),
2002, pp. 370–374.

[29] M. Vlachos, P. Yu, and V. Castelli, “On periodicity detection and
structural periodic similarity,” in SIAM international conference on data
mining, 2005, pp. 449–460.

[30] T.-H. Li, “Detection and Estimation of Hidden Periodicity in Asym-
metric Noise by Using Quantile Periodogram,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012,
pp. 3969–3972.

[31] R. G. McKilliam, I. V. L. Clarkson, and B. G. Quinn, “Fast Sparse
Period Estimation,” IEEE Signal Processing Letters, vol. 22, no. 1, pp.
62–66, 2014.

[32] Y. Malode, D. Khadse, and D. Jamthe, “Efficient Periodicity Mining
Using Circular Autocorrelation in Time Series Data,” International
Research Journal of Engineering and Technology (IRJET), vol. 2, no. 3,
pp. 430–436, 2015.

[33] P. Unnikrishnan and V. Jothiprakash, “Daily Rainfall Forecasting for
One Year in a Single Run Using Singular Spectrum Analysis,” Journal
of Hydrology, vol. 561, no. 1, pp. 609–621, 2018.

[34] T. Puech, M. Boussard, A. D’Amato, and G. Millerand, “A Fully Auto-
mated Periodicity Detection in Time Series,” in International Workshop
on Advanced Analysis and Learning on Temporal Data (AALTD), 2019,
pp. 43–54.

[35] S. Vadineanu and M. Nasri, “Robust and accurate period inference using
regression-based techniques,” in IEEE Real-Time Systems Symposium
(RTSS), 2020.

[36] C.-Y. Chen, S. Mohan, R. Pellizzoni, R. B. Bobba, and N. Kiyavash,
“A novel side-channel in real-time schedulers,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2019, pp.
90–102.

[37] M. Völp, C.-J. Hamann, and H. Härtig, “Avoiding timing channels in
fixed-priority schedulers,” in Proceedings of the 2008 ACM symposium
on Information, computer and communications security, 2008, pp. 44–
55.

[38] S. Mohan, M.-K. Yoon, R. Pellizzoni, and R. B. Bobba, “Integrating
security constraints into fixed priority real-time schedulers,” Real-Time
Systems, vol. 52, no. 5, pp. 644–674, 2016.

[39] M. Yoon, S. Mohan, C. Chen, and L. Sha, “Taskshuffler: A schedule
randomization protocol for obfuscation against timing inference attacks
in real-time systems,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016, pp. 1–12.

[40] K. Krüger, M. Volp, and G. Fohler, “Vulnerability analysis and mit-
igation of directed timing inference based attacks on time-triggered
systems,” LIPIcs-Leibniz International Proceedings in Informatics, vol.
106, p. 22, 2018.

13

