
CUPID: A Labeled Dataset with Pentesting for
Evaluation of Network Intrusion Detection

Heather Lawrencea, Uchenna Ezeobia, Orly Tauilb, Jacob Nosalb,
Owen Redwoodb, Yanyan Zhuanga, Gedare Blooma

a University of Colorado Colorado Springs, Colorado Springs, Colorado 80918
b Nebraska Applied Research Institute, University of Nebraska Omaha,

Omaha, Nebraska 68106
Corresponding Author: hlawrenc@uccs.edu

Abstract

Reproducibility of network intrusion detection research necessitates widely avail-
able datasets that represent real-world scenarios. One of the key omissions of
existing datasets used in empirical evaluations of network intrusions is the lack
of human-generated traffic with accurate labels to distinguish benign and mali-
cious behavior. Using an emulated network environment with a vulnerable web
application, we collected baseline traffic, human-generated normal user traffic,
automated attacks, and the attacks of ten human penetration testers of varying
abilities. We preprocessed this collected data to produce a new dataset named
the Colorado University Pentesting Intrusion Dataset (CUPID). The attacks
span from reconnaissance activities to delivery of an exploit payload. To our
knowledge, this is the first collection that provides labeled, Institutional Re-
view Board-approved, benign and attacker data that is publicly available. The
CUPID dataset can be used to train and test the limits of classification-based
machine learning algorithms used for network intrusion detection systems.

1. Introduction

Network intrusion detection is a process of ingesting and analyzing large
amounts of traffic to determine the presence of an adversarial agent. A signif-
icant problem in the evaluation of intrusion detection techniques is the lack of
high-fidelity data that is representative of the operational environment. Usable
network data has been traditionally difficult to obtain [1, 2, 3]. As a result of
poor data, problems in conducting network intrusion detection research include:
limited availability of labeled malicious and benign research data, poor transla-
tion of experimental results to operational validity, detection mechanisms that
suffer from superfluous false positives at scale and incur nontrivial analyst over-
head and eventual distrust [4, 5], network data that cannot be released due to
leaking network stakeholder information or violation of user confidentiality [6],
and poor fidelity due to cleanliness of simulated data versus real data [1].

Preprint submitted to Elsevier

A robust network intrusion detection dataset includes (1) labels, (2) a flex-
ible data model, and (3) realistic generation. Labeled data is necessary for
evaluating ground truth in measuring classifier performance and a prerequisite
for exploring supervised learning algorithms. Flexible data models like packet
captures that include richer data, such as fully unencrypted network traffic
payloads, are necessary for some experiments but require more storage and pro-
cessing capabilities. Network flows, in contrast to packet captures, represent a
distillation of raw traffic data into predefined features, like source IP address or
protocol, that can save on space and processing. However, feature visibility can
be lost in distillation and the original traffic cannot be reconstructed [6].

To realistically generate network traffic for datasets, three methods are com-
monly used. These methods include: (1) model-based approaches that use
stochastic traffic models; (2) trace-based approaches that use data and mea-
surements from a real environment; and (3) network testing devices that test
devices by generating packets following a specific protocol [7, 8]. Model-based
approaches use complex models to generate traffic that can be difficult to im-
plement depending on the complexity of the model, but they can yield highly
accurate results. Trace-based approaches, in contrast, contain real packets and
unmodified headers because the data is recorded live from the network. How-
ever, trace-based approaches require automation scripts, system configurations,
and system updates that add complexity. Returning to a baseline configuration
post-experiment or to add functionality incurs additional overhead. A network
testing device accurately times packets and has great performance. However,
testing devices are considered unsuitable for generating a wide variety of traffic
at once as the devices are generally designed to test a specific protocol at a time
and the packets do not contain authentic payload data or headers. Among the
three common methods, the trace-based approach offers the most realism but
also the greatest complexity.

In this paper, we present the Colorado University Pentesting Intrusion Dataset
(CUPID), a trace-based dataset that is intended to aid network intrusion de-
tection research by providing updated, accessible, and labeled network traffic.
CUPID was designed to allow researchers to investigate the differences between
automated and human-generated attacks at the feature level, as it contains both
scripted and human-generated attack traffic, packet headers, and payloads while
sensitive network implementation details and user data were not included.

We designed the network to provide protocol variety, maintain a majority of
TLS 1.2 traffic, and provide a simulated enterprise environment for human pen-
etration testers. We document our approach to enable thorough understanding
of the dataset and to facilitate possible reproduction by others to create their
own variations of CUPID. Since packet captures cannot be reconstructed from
network flows [6], the original packet captures from the network tap, the pro-
cessed network flows, and the feature preprocessing scripts are provided as part
of the dataset. CUPID is freely available1 for public use.

1https://www.cupid.directory

2

The remainder of this paper is organized as follows. We discuss the related
work in Section 2, which is followed by our methodology in Section 3. Section 4
describes the involvement of human participants in the creation of CUPID. We
explain the data collection approach in Section 5. Section 6 provides analysis
of the dataset features. We discuss some of the challenges we faced and how
we overcame them in Section 7. We discuss possible future work in Section 8
and we conclude the main body of this paper in Section 9. Finally, Appendix
A summarizes interview responses of the penetration testers involved in this
project, and Appendix B details the hardware/software specifications of the
CUPID collection infrastructure.

2. Related Work

We reviewed related academic and community cybersecurity datasets to
determine the extent of datasets that contained human- and automatically-
generated traffic that was also labeled. We reviewed network data generation
methods to determine suitability to generate such a dataset. In this section we
summarize our findings.

2.1. Early Datasets

Early popular public network intrusion detection datasets include packet
traces from the 1998 DARPA Intrusion Detection Assessment and the data pro-
vided for the Third International Knowledge Discovery and Data (KDD) Mining
Tools Competition, colloquially known as the KDD99 dataset [9]. KDD99 con-
tains 4.9 million attacks gathered from monitoring a simulated U.S. Air Force
network for a total of 9 weeks of which 7 weeks contained training data and
2 weeks contained test data [10]. This data was gathered in 1998 and refined
in 1999. The KDD99 dataset distills the network traffic into a custom data
structure and adds labels for machine learning [9]. This archetypal dataset es-
tablishes the following attack taxonomy: DoS (Denial of Service), R2L (Root to
Local), U2R (User to Root), Probe (reconnaissance), and Normal. It contains
41 crafted features over 37 attacks including some features that specifically flag
an attack such as root shell or num shells. Unlike an IP address, these engi-
neered features are not inherently evident solely from a base network traffic file
and require post analysis and correlation to identify and label.

NSL-KDD [11], marketed as an improvement upon the KDD99 dataset,
provided 41 features across 22 different attack groups within the 4 attack types
established within KDD99. NSL-KDD eliminated redundant features contained
within the KDD99 dataset [11] that could cause bias when training a classifier,
the number of selected records from each level is inversely proportional to the
percentage of records in the original KDD99 set, and the number of records
in the train and test sets are more balanced [12, 13]. This improved dataset
spawned another wave of advancement. From 2000 to 2008, more than 50% of
276 peer-reviewed IDS studies used the KDD99 or NSL-KDD dataset, and 85%
provided their own datasets gathered data directly from their target environ-
ment [14]. Despite documented limitations with artificiality and dated attacks

3

and protocols, KDD99 and NSL-KDD have provided the foundation for most
network intrusion detection research [15, 16, 17].

By 2010 it was apparent that datasets required newer attack techniques to
continue to push the state of the art with regards to network intrusion detection
models. While the NSL-KDD dataset eliminated redundant data that skewed
the original KDD99 dataset, neither dataset contains current attack techniques
or methodologies [1] and, due to their simulated nature, they also do not con-
tain real packet headers or payload data. There were several releases of new
datasets [3] to meet this demand though the sentiment for additional usable
network data perpetuated as late as 2017 [18].

2.2. Post KDD99 and NSL-KDD

Several datasets have been released since KDD99 and NSL-KDD with vary-
ing levels of protocol variety, formats, feature engineering, and accessibility [19].
Ideal datasets contain realistic network traffic, labels, include all network in-
teractions, contain a complete capture, preserve privacy, and capture diverse
intrusion scenarios [20]. Raw network data produced by private enterprises,
like Cisco Systems, Inc., often carries data confidentiality risks where sensitive
network implementation details could be inadvertently leaked [21]. Artificial
post-capture trace insertions are discouraged. Several datasets [22, 23, 24] pro-
vide traffic specific to a class of attack pattern (like SSH attacks or botnet
traffic) or over a different medium (e.g., solely 802.11 traffic versus Ethernet
traffic), while others attempt to provide a large dataset with a variety of at-
tack patterns [25, 26]. We provide a high level comparison of these datasets in
Table 3, and briefly summarize them in the following.

The CTU-13 dataset [22], published in 2013, comprises thirteen network
traffic captures containing botnet traffic. The network consisted of virtualized
computers running Windows XP SP2—what the botnet malware could run on
at the time—on a Linux Debian host bridged into a university network. The
released set of network traffic contains both the traffic from the virtualized
computers and the university router, though some of the traffic was removed
due to privacy concerns. The authors distinguished botnet traffic as traffic that
travels to or from any known infected IP addresses [25].

In 2014 Hofstede et al. [23] refined a detection algorithm for SSH attacks and
tested the algorithm on network flows containing the network traffic from al-
most 100 servers, workstations, and honeypots before releasing the anonymized
network traffic in the form of flow data and host log files. This traffic was col-
lected from the University of Twente campus network. Analysis of the dataset
was limited to SSH attacks and detections.

Moustafa and Slay [25] also reflected on the lack of quality datasets since
KDD99 and NSL-KDD and created the UNSW-NB15 dataset in 2015. UNSW-
NB15 used the IXIA PerfectStorm tool [27] to generate nine families of attacks.
The tool simulates a large-scale network and popular web applications. Net-
work traffic was captured using tcpdump, distilled into network flows using
Argus [28], and analyzed using Bro (now called Zeek [29]). The IXIA tool gen-
erates attacks at a rate of one attack per second for the first 50 GB of the

4

dataset and increases to 10 attacks per second for the second 50 GB of the
dataset. The dataset contains 49 features aggregated from the capture data
and Zeek logs with all connection information seen, HTTP requests, and FTP
services. Attack labels are contained in a truth table generated by the IXIA
tool.

The Aegean Wi-Fi Intrusion Dataset (AWID) is a publicly available curated
dataset of 802.11 normal and attack traffic, with 15GB of total data containing
about 1.6 million normal records and 160 thousand attack records. Kolias et
al. [24] used Kali Linux to conduct penetration testing and Wireshark to log
traffic. They solely relied on automated attacks and included attack-free traffic
in which users conducted normal network operations such as browsing and file
sharing.

The CICIDS2017 dataset [26] includes a variety of attacks such as pass-
word brute forcing, a heartbleed exploit, botnet traffic, traffic floods resulting
in DoS and distributed DoS, a web server SQL injection, cross site scripting,
and an infiltration. These attacks were recorded on a diverse network consist-
ing of Windows and Ubuntu hosts, a firewall, several switches, and using both
Windows 8.1 and Kali as attacking nodes. Of note the CICIDS2017 dataset
contains redundant features that require removal (i.e., “Fwd Header Length”)
and rows containing “Infinity” and “NaN” [30].

Despite the call for more available training data of a higher caliber [1, 18],
some datasets remain difficult to publicly access or focus on capturing specific
attributes like accurate labeling [31] or uncommonly captured protocols like
802.11 [24]. We agree with Ring et al. [19] that the importance of different
dataset properties vary on a researcher’s use case and some data that is useful for
an area of research may not be applicable to another. Thus we follow as closely
to the guidelines outlined by Ring et al. [19] to create a strong and reproducible
dataset, but recognize that this dataset is not applicable in every scenario.
Those guidelines include: up-to-date network-based data and protocols, publicly
available, real network traffic, a variety of malicious and normal user behavior,
and a meaningful payload [19].

Community Datasets. Several community capture the flag datasets are
available, such as DEF CON’s Wall of Sheep or CTF datasets [32], that contain
both malicious and benign user traffic. User traffic is captured as it is seen on
the network, gathered, and presented to the public as free datasets for analysis.
These datasets, while large and representative of actual networks and protocols,
would require labeling prior to use in a supervised learning environment.

2.3. Data Generation and Testbed Network Infrastructure

Several datasets have been established in recent years including the National
Collegiate Cyber Defense Competition [33, 34] which tests a collegiate-level
network defenders’ ability to repel and defend their infrastructure against a set
of professional penetration testers. The simulated enterprise networks they use
to monitor the performance of defenders are modelled after networks in use
by small businesses using similar services like a web server, mail server, and
e-commerce site. With recent advancements in virtualization, using a model

5

Internet

DNS

ASA
Netgear
Switch

Lab Controller
Internal DNS

Attacker

Top Blade

Bottom Blade

Drones
1-10

Network Tap

Campus
Network

SMB
Fileshare
& DVWA

Drones
23-33

ExchangeWiki

Figure 1: Network Architecture used in CUPID Collection.

network to generate data provides usable data that does not carry the risk of
leaking sensitive details nor relies on simulated data that does not contain real
packet information. Ring et al. [3] uses a similar approach by virtualizing a
small business network through OpenStack2.

Several testbeds exist that provide network resources, like CPU and disk
space, and can generate network traffic but they were not ideal for this approach.
PlanetLab [35], for example, is a testbed project from 2003 that is distributed
globally over 100 nodes and 42 sites using slices of distributed resources to pro-
vide for user needs. The FABRIC testbed [36] and Global Environment for Net-
work Innovations (GENI) [37] also provide experiment infrastructure connecting
different national resources. While these resources are available for large cyber-
security experiments requiring physics simulation, we needed a smaller scale
infrastructure that we could control with seeded vulnerabilities to leverage for
attack traffic and provide access to different human attackers in multiple ses-
sions. Further, the noise included from OS updates is less artificial than merely
connecting services and hosts.

3. Methodology

The objective of CUPID is to reflect both human interaction on a network
and automated traffic for benign and malicious activities. In this section, we
describe the network design and the automated means to generate traffic for the
CUPID dataset.

3.1. Network Design

Figure 1 depicts a network diagram of the mock enterprise network we cre-
ated for collecting CUPID. The data range of workstation drones created net-
work traffic data in addition to the normal communication required to maintain
service to the network. The lab controller provided DNS to workstations seek-
ing internal network services. External DNS was required when users were web

2https://www.openstack.org/

6

surfing and was provided by the campus network. The campus network was
isolated from the CUPID network by a Cisco ASA firewall. The network tap
monitored and recorded traffic traversing through the switch.

The network hardware consisted of three servers and a desktop computer
that provided endpoints, services, and network monitoring capabilities. The top
and bottom blades virtualized all drone workstations. Drones were installed
with Windows 7 Service Pack 2. Intentionally vulnerable operating systems
were chosen partially as a way to seed exploitable vulnerabilities throughout the
network and partially as a reflection of the market share that obsolete Windows
versions still maintain [38]. The bottom blade also provided an Exchange server,
an SMB fileshare, a Wiki page and a vulnerable web application (DVWA3). The
last blade served as a lab controller and provided DNS for the internal network.
Lastly, the data science tower served as data storage and a network monitoring
device.

3.2. Scripted Normal Traffic

Normal data was generated by scripting virtual user actions through Power-
Shell. Each workstation belongs to a specific mock user where each mock user is
assigned a fixed profile: administration, engineering, or business. Each virtual
user randomly browsed from a pool of 30 Azure-hosted websites using cURL,
accessed email using the Exchange server, read or wrote to an SMB fileshare,
or browsed a pool of internal Wiki addresses. Windows 7 comes with Power-
Shell version 2.0 installed and was updated to version 5.0 to run the automation.
Baseline data consists of this profile-generated traffic, inter-endpoint traffic, and
traffic required to maintain network services.

3.3. Scripted Malicious Traffic

Malicious data was generated by triggering tools available through the Kali
Linux distribution. A preconfigured script was used on each attacking node
using command line arguments for existing exploit tools. Additionally, human-
generated malicious and benign traffic was gathered, as described in Section 4.

The network tap recorded packet captures which were reviewed and manu-
ally validated afterwards. The captures were opened to verify that they were
uncorrupted and traffic was analyzed to determine the attack could be seen in
the capture, such that the capture could be labeled malicious or benign. To
isolate attacks we constructed Wireshark filter rules that separated malicious
from benign using their source IPs, converted the rules to Pandas dataframe
filters, and used the rules to apply the applicable Label. Malicious traffic was
labeled ‘1’ and benign traffic was labeled ‘0’. Additional details are available in
Section 5.

3https://github.com/ethicalhack3r/DVWA

7

3.4. Decrypting Encrypted Payloads

As a design decision we valued fully unencrypted payloads as opposed to
encrypted data (e.g., HTTPS). A key reason to avoid encryption is that the
use of TLS 1.3 changes the structure of the TLS handshake, particularly the
ClientHello message. When used with HTTP/2, which summarizes HTTP
headers to decrease the time to download web pages, the HTTP headers are not
human readable and impacts the features available for training [21].

User traffic for web surfing creates substantial TLS traffic, especially by the
automated surfing scripts. The set of websites originally used for automated
user web surfing consisted of sites that correlated with the user’s business func-
tion, like an Excel tutorial for a business user, or were pulled from the Cisco
Popularity List [39]. Several of these websites had already enabled HTTP/2 for
an enhanced user experience, thus obscuring their plaintext web traffic headers
and undermining their usefulness for classifier training.

The goal to provide decrypted SSL/TLS traffic to the classifier required
several architecture configuration changes. The first step involved using Pow-
ershell scripting to negotiate HTTP/1.1 or lower for web browsing. Using the
ephemeral Diffie-Hellman encryption keys from each browser and HTTP/1.1 or
lower traffic, Wireshark could decrypt the web traffic and web traffic headers
could be viewed in plaintext. Wireshark, however, does not support saving de-
crypted packet capture files. Thus, we chose to mirror websites in the cloud
and configured each to negotiate TLS 1.2 or lower. A small amount of TLS 1.3
application traffic could not be removed from servers providing system updates.
cURL was introduced to replace the browser as a troubleshooting variable thus
reducing complexity. Note that although mirroring reduced the impact of TLS
1.3 via artificial means, it also reduced the feature space due to the reduction
of third-party advertisers.4 Now, with most of the web traffic under TLS 1.2,
the network was able to support an unencrypted data pipeline where traffic is
monitored from a network tap, saved, and distilled by CICFlowMeter [26] into
features.

Although the site mirroring technique added artificiality to the dataset, the
majority of web traffic in the wild still prefers TLS 1.2 traffic with a growing
segment deploying TLS 1.3. Qualys SSL Labs scans 150,000 of the most popu-
lar websites on a monthly basis [40]. In January 2022, 99.6% of these websites
supported TLS 1.2 while only 51.4% supported TLS 1.3. Hardware and soft-
ware specifications used in the data generation range are available in Appendix
B, and the pipeline of data collection and processing is described further in
Section 5.

4We noticed that the number of hosts in the dataset was significantly bigger than the direct
surfing would imply, due to the number of third-party advertisers attached to each visit to a
website.

8

4. Human-in-the-Loop Traffic

A key feature of CUPID is the involvement of human-guided traffic in the
dataset. We recruited ten ethical penetration testers (pentesters) to participate
in the creation of CUPID. We captured the normal browsing traffic of these
ten pentesters as they conducted the same activities as the scripted users over
the span of an hour before capturing malicious traffic over the span of another
hour, or when the pentester decided to cease operations (generally if the server
was successfully exploited before the time expired). As mentioned before, benign
traffic generated this way was labeled with a ‘0’, and human-generated malicious
traffic was labeled with a ‘1’ based on the IP of the Kali instance.

We followed best practices to protect the identities of the participants while
releasing the data publicly. We conducted semi-structured interviews with the
pentesters in October 2019. Appendix A summarizes those interviews. In this
section we describe our recruitment process, candidate screening, and limitations
of our approach. This study was evaluated and approved by the University of
Nebraska Medical Center’s Institutional Review Board (IRB).

Recruitment Process. We advertised this research study to the following
organizations to recruit participants: a local DEF CON group, the university’s
cybersecurity student organization, on virtual chatrooms (Slack) known to con-
tain local cybersecurity professionals, to university employees, and via personal
contacts. Employees, as they are potentially a vulnerable population, were
specifically briefed that their participation was voluntary and refusal to par-
ticipate would not affect their employment or any benefit to which they were
already entitled.

Participant Screening. We asked all pentesters to self-assess their abil-
ities to complete tasks on the network. Specifically, we asked them to rate
themselves from 1 to 5 on their ability to interact with services like a normal
user and how proficient they were with finding and leveraging web applica-
tion vulnerabilities. Pentesters were asked to keep notes of their strategy. For
example, a strategy could have been using SQL injection (SQLi) to discover
usernames and passwords. Pentester responses to the self-evaluation questions
and their self-documented strategies are available in Appendix A.

Limitations. We suppose that insider threats need not be seasoned pene-
tration testers to leverage vulnerabilities using public resources, and we sought
a variety of skill levels for CUPID. However, pentesters may inflate or deflate
the perception of their skill sets [41]. So we cannot be sure of the actual range of
abilities included solely based on the information volunteered by the pentesters
themselves.

To save time for attack success we opted to use a vulnerable web application
(DVWA) that is commonly used to teach web application vulnerabilities. This
approach has one major limitation, which is that the vulnerabilities are com-
mon and easily exploited. Thus, the time (and network traffic) associated with
finding vulnerabilities from scratch is not representative of the time it may take
an attacker to conduct reconnaissance to discover flaws.

9

Collect and audit
traffic File Conversion Feature

Extraction
Preprocessing
and Labeling

Network
Tap

Wireshark

Labeled
Dataset

tshark CICFlowMeter Pandas

.pcapng .pcap .csv

Figure 2: Data processing pipeline.

5. Data Collection

The network tap collected traffic from a mirrored port on the switch. Hard-
ware specifications are available in Appendix B. Wireshark collected network
traffic at the switch during all traffic monitoring. Traffic captures were saved in
a .pcapng format. Figure 2 depicts the network data processing pipeline used
during the collection and preprocessing stages of CUPID’s creation, which we
describe in the remainder of this section.

5.1. Feature Extraction

The output of tshark is a capture saved in the .pcap file format. CI-
CFlowMeter [26] analyzes packet captures for meta features including inter-
packet times and bytes between endpoints. The output of CICFlowMeter is in
comma separated value (.csv) format, which we process in Python3 to feature
engineer and label conversations as malicious or benign, as shown in Figure 2.

5.2. Data Preprocessing

The csv output for CICFlowMeter for each packet capture is no longer de-
scribing traffic at a packet level but instead at a conversation level. That is,
what was a list of packets between nodes is now a data object containing in-
formation about a conversation between nodes (i.e., a network flow). The data
now requires labeling, where label ‘1’ will be used to indicate malicious traffic
and ‘0’ for benign.

Our labeling is based on the host’s source IP address as traffic is generated
from the host. IP spoofing was not used during the creation of the dataset so
we have ground truth of source IP addresses. We used Python Pandas to parse
csv files into DataFrames and label rows based on Wireshark rules. An example
of such a rule can be seen in 3 where ‘x’ is column in a DataFrame. Figure 3
shows that, assuming malicious traffic originated from 10.10.10.4, rows corre-
sponding to traffic originating from the malicious IP address are labeled with
a ‘1’. Hence, the rules label the malicious traffic to distinguish it from normal
so that ground truth is available within the dataset. The two dataframes—
malicious and benign—were concatenated prior to further preprocessing. This
extraction, splitting, labeling, and concatenating is repeated over each malicious
file until all fields are contained within the same DataFrame.

10

def mal i c i ou s (x) :
I f t r a f f i c was from 1 0 . 1 0 . 1 0 . 4
AND the p r o t o c o l was ICMP, i t ’ s m a l i c i o u s
i f DataFrame . l o c [DataFrame [’ pr ’] == 1 . 0] :

DataFrame [’ l a b e l ’] == ’ 1 ’

Figure 3: Rule Conversion

6. Dataset Analysis

In this section we describe and analyze CUPID. We provide a detailed break-
down of one of the four 24-hour normal (baseline) data samples. Summaries of
the full set of samples in the dataset are also given with comparison to similar
public datasets for network intrusion detection.

Protocol Breakdown. One of the 24-hour baseline data samples was taken
on the first day of sampling in April 2019. The raw 042219 1000.pcapng data
file contains 4,346,077 packets requiring approximately 3.3 GB of storage. The
entirety of the CUPID dataset comprises approximately 50 GB. Outside of the
local address space, the sample contains 179 unique hosts. Most of the packets
in this sample were TCP-based (75%) and include protocols like Internet Con-
trol Message Protocol (ICMP), Distributed Computing Environment (DCE) /
Remote Procedure Call (RPC), Hypertext Transfer Protocol (HTTP), Simple
Mail Transfer Protocol (SMTP), Kerberos, Lightweight Directory Access Pro-
tocol (LDAP), and Network Basic Input/Output System (NetBIOS) / Server
Message Block (SMB). The packet capture contains UDP-based data (7.5%)
with Network Time Protocol (NTP) and Domain Name System (DNS). Ad-
dressing protocols like ARP and 802.1Q Virtual LAN comprise the remaining
traffic. Table 1 provides a breakdown of the most commonly seen protocols in
this dataset. The rich variety of protocols in CUPID is due to including services
that are representative of enterprise environments like email, DNS lookups, and
active directory accesses. Of note, SSL/TLS traffic is present in the capture
with 25,341 (0.6%) total packets. The majority of this traffic is in TLS 1.2 or
earlier and certificate issuer details can be read in plaintext.

Attack Variety. The sample of attacks available within CUPID was not
intended to be exhaustive but representative of stages seen within the cyber
kill chain attack strategy. Reconnaissance, for example, is required to under-
stand the network ecosystem. In CUPID reconnaissance is performed using
common system utilities like nmap and nslookup to generate the traffic from
an attacker Kali Linux host. Similarly, BoNeSi5 generates ICMP, UDP and
TCP (HTTP) flooding attacks that were used to indicate command and con-
trol traffic. Commonly available tools were used to increase reproducibility and
reduce implementation complexity. A list of the attacks in CUPID mapped to

5https://github.com/Markus-Go/bonesi

11

Protocol Pkts (%) Pkts

TCP

Internet Control Message Protocol
(ICMP)

10.48 455,600

Distributed Computing Environment /
Remote Procedure Call (DCE/RPC)

4.00 173,931

Hypertext Transfer Protocol (HTTP) 1.71 74,576
Simple Mail Transfer Protocol (SMTP) 0.11 4,937
Kerberos 0.80 35,151
Lightweight Directory Access Protocol
(LDAP)

8.61 374,467

NetBIOS Session Service 8.48 368,961

UDP
Network Time Protocol (NTP) 1.79 78,110
Domain Name System (DNS) 2.32 101,258

Addressing
Address Resolution Protocol (ARP) 6.50 282,632
802.1Q Virtual LAN 13.92 605,126

Table 1: Protocol breakdown (non-exhaustive) for a single 24-hour baseline sample.

Attacks in CUPID CKC KDD99†

Webcrawling Reconnaissance Normal

Recorded live user interaction Various Probe,
U2R, R2L

ARP, nmap, Dig, DNSMap, DNSTracer, nslookup Reconnaissance Probe

SQLi, Directory Traversal, Password brute forcing Weaponization R2L

Delivery of reverse Meterpreter shell Delivery R2L

STP, DHCP attacks Exploitation DOS

BoNeSi C2 traffic DOS
†
The KDD99 taxonomy includes DoS (Denial of Service), R2L (Root to Local), U2R (User to

Root), Probe (reconnaissance), and Normal.

Table 2: Attacks in CUPID Mapped to Cyber Kill Chain (CKC) and KDD99 Taxonomy.

the KDD99 taxonomy is available in Table 2.
Training Example Comparison. We provide the CUPID dataset in its

native packet capture form and as extracted features using CICFlowMeter [26].
As shown in Table 3, CUPID provides a comparable number of testing and
training examples as similar NIDS datasets.

6.1. Variety

Networks and attacks continually increase in complexity and acceptable
datasets for intrusion detection should capture diverse intrusion scenarios [31]
on endpoints with different hardware. Here we attempt to quantify this diver-
sity by comparing CUPID against other publicly available datasets, including
KDD99, using the destination port occurrence. Well-known ports, or system
ports, are ports 0 to ports 1023 and are registered with the Internet Assigned
Numbers Authority (IANA). These ports are registered to specific system ap-
plications that, by standard, accept data on the port registered. Secure shell

12

Name (Year) Entropy Format
Data
(rows)

Features Human

KDD99 & NSL-
KDD (1998)

0.705 custom 148,515 43 N

CTU-13 (2013) 0.718
packet, uni- & bi-
directional flow

312,913 84 N

UNSW-NB15
(2015)

1.581 packet, other 2,540,043 157 N

CICIDS2017
(2017)

1.005
packet, bi-
directional flow

2,884,588 79 N

CUPID (2019) 1.258 packet 1,464,190 84 Y

Table 3: CUPID comparison to other datasets. Variety metric calculated using entropy of
destination port occurrence as discussed in Section 6.1.1. “Custom” indicates a special format
specific to KDD99.

(SSH), for example, is registered to port 22 and accepts traffic on that port by
default if enabled.

6.1.1. Data Variety through Entropy

We analyzed each dataset for the destination port occurrence and compared
them via relative entropy, calculated as

H = Σ65535
i=0 n log

(
di
n

)
(1)

where di is the number of occurrences of destination port i, and n is the sum of
all destination port occurrences.

As shown in the Entropy column in Table 3, the KDD99 and CTU-13
datasets are the least entropic, or least random, datasets. The KDD99 dataset
was simulated and CTU-13 focused solely on botnet-related attacks. As KDD99
and CTU-13 are also the least entropic, we suggest that entropy may be a mea-
sure that indicates the artificiality of a dataset. CICIDS2017 and CUPID are
close in value and were both created on network ranges and captured various,
more recent, attack techniques. UNSW-NB15 was generated using an enterprise
cyber range tool and includes multiple attack techniques which may indicate
why it leads the other datasets in this metric.

6.1.2. Destination Port Distribution

Figure 4 shows the frequency of destination ports across the KDD99, UNSW-
NB15, CUPID, CTU-13, and CICIDS17 datasets. These plots show the top
services based on the destination port where both the TCP and UDP port
number are the same (for example, SSH is standard on port 22 regardless if
over TCP or UDP) or where the destination port is protocol-specific (e.g., NTP
uses UDP over port 123) to reduce the complexity of requiring the protocol
name to verify the service. Measured protocol traffic consisting of less than
one percent of the total traffic was removed. This simplified analysis is used as

13

neither the KDD99 nor the CICIDS17 datasets include the protocol name field.
Ports 49152-65535 were grouped together to reflect the ‘Private’ port group
designated by IANA. Services are color-coded across datasets.

These plots yield insights into the network protocols popular across the
datasets. Several protocols are only available in KDD99—the first and oldest
dataset—like telnet and imap4. Common protocols like Hypertext Transfer
Protocol (HTTP) and private services were in all the datasets to varying degrees.
CUPID stands out by providing more Lightweight Directory Access Protocol
(LDAP) and Network Basic In-Out System (NetBIOS) traffic, which is likely
due to running active directory.

6.1.3. Human-Generated Pentester Traffic

The CUPID dataset provides the network traces of ten individual penetra-
tion testers. Each penetration tester was given an hour to engage with network
resources and an additional hour to intentionally attack the DVWA instance.
Visualizing additional features in the CUPID set from human input shows dif-
ferences between normal and abnormal behavior. In Figure 5 the number of
forward packets per second is shown for each participant’s trace. The x-axis
shows all the unique flow IDs, and the y-axis shows the traffic volume in each
flow. The normal user behavior (light green) reflects user actions as they used
resources on the network while abnormal behavior (black) reflects intentional
misuse of the DVWA instance. Aside from participant 10, distinctly abnormal
clusters appear in the malicious behavior that do not follow the normal user
behavior. Participant 10’s traffic did not have significant differences between
benign and malicious traffic. Participant 10 did not seem to search or utilize
network resources differently regardless of acting as a normal user or an attacker.
Their self-assessment, available in Appendix A, indicated they knew little about
leveraging vulnerabilities and did not complete the task before timeout. The
malicious traffic by participant 9 stands out among the samples in both traffic
volume and number of flows. In their self-assessment they indicated they used
both a port scan and gobuster—a brute force tool used to find web applica-
tion vulnerabilities—against DVWA. Both of these examples seem to indicate
that abnormal behavior is visually separable from normal user behavior across
participants.

6.2. NIDS Classifier Training

CUPID was compared against CICIDS17 and CTU-13 to determine how
classic NIDS classifiers perform when trained against each dataset. Categorical
and time-based features were dropped including the Flow ID, Src IP, Dst IP, and
Timestamp. Once cleaned, the data was split into training and testing folds.
Benign examples out-numbered attack examples at almost 10 to 1. Repeated
stratified k-fold was used due to the unbalanced data with 5 splits and 2 repeats
resulting in 10 folds. Features were determined based on a variance threshold
of 0.25 before training using a standard suite of classifiers commonly found in
NIDS research show in Tables 4, 5, and 6. Classifiers were tuned for performance

14

48%

27%

8%

8%

4%

2%
2%
1%

http
private
smtp
ftp_data
telnet
ftp
finger
pop3, imap4, uucp

(a) KDD99

35%

20%

20%
8%

8%

5%

5%

dns
http
private
smtp
sunrpc
ftp
ssh

(b) UNSW-NB15

27%
23%

17%

15%

11%

7%

1%

smtp
http
https
dns
ssh
private
bgp, ftp, and netbios_dgm

(c) CTU-13

39%

25%

21%

13%

1%

dns
http
https
private
ntp, ssh, ftp

(d) CICIDS17

35%

24%

22%
9%

6%

3%
1%

private
ldap
dns
http
ntp
https
netbios dgm, ssn, and ns

(e) CUPID

Figure 4: Destination Port Count Across Datasets. Ports 49152-65535 were grouped together
to reflect the ‘Private’ port group designated by IANA. Each legend provides the top protocol
based on destination port. The ordering of the protocols in each legend reflects the top
percentage sorted in descending order.

15

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s
1e6

(a) Participant 1

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(b) Participant 2

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(c) Participant 3

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(d) Participant 4

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(e) Participant 5

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(f) Participant 6

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(g) Participant 7

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(h) Participant 8

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(i) Participant 9

0 5000 10000
Flow Number

0.0

0.5

1.0

1.5

2.0

Fw
d

P
ac

ke
ts

/s

1e6

(j) Participant 10

Figure 5: Forward packets per second graphed by participant across flows. Black indicates
attack traffic while green indicates benign traffic. Flow Number is a specific conversation in
the network traffic captured chronologically.

16

Name Precision Recall Accuracy F1 Score

LR 0.714246 0.723102 0.700936 0.718643
RF 0.963150 0.783244 0.869682 0.863928
NB 0.561325 0.945076 0.580873 0.704319
SVM 0.713791 0.720782 0.699863 0.717267
KNN 0.902897 0.843573 0.869456 0.872226
MLP 0.878844 0.792951 0.832851 0.833625

Table 4: CTU13 Classifier Training.

Name Precision Recall Accuracy F1 Score

LR 0.850949 0.823433 0.936863 0.836964
RF 0.995481 0.795245 0.958992 0.884167
NB 0.220144 0.997860 0.303830 0.360707
SVM 0.847798 0.796430 0.931795 0.821312
KNN 0.985311 0.993704 0.995845 0.989490
MLP 0.987823 0.990273 0.995681 0.989039

Table 5: CICIDS Classifier Training

Name Precision Recall Accuracy F1 Score

LR 0.940299 0.839514 0.975092 0.887051
RF 0.994513 0.804239 0.976676 0.889311
NB 0.189232 0.976009 0.510007 0.317003
SVM 0.944529 0.844213 0.976073 0.891556
KNN 0.977893 0.968190 0.993744 0.973017
MLP 0.983376 0.965093 0.994032 0.974146

Table 6: CUPID Classifier Training

17

(training speed) and not optimized per dataset. More specifically, the same
classifier configuration was used for each dataset.

Classifiers trained with CUPID performed similarly to the other two datasets.
Precision, recall, accuracy, and the F1-score varied between 0.6998 and 0.9978
across CUPID, CTU-13, and CICIDS 2017. Classification using Näıve Bayes
presents as an outlier in Tables 4, 5, and 6 with significantly poorer results.
This outlier shows across all metrics and datasets, and is consistent with prior
work that shows Näıve Bayes performs poorly on CTU-13 [42] and CICIDS [43].

7. Discussion

In addition to the conscious design choices we made (such as plaintext packet
capture), we discovered several pitfalls for future researchers to consider care-
fully when constructing a dataset collection study.

Visibility. As data is recorded and transformed, the loss of data fidelity is
inevitably sacrificed for reduced storage space and reduced preprocessing time.
The conversion of packets into conversational flows can cause loss of useful
fields that could aid in detecting attacks which are available only at a packet-
level. More specifically, layer 2 attacks are most easily filterable by a hardware
address, but hardware addresses are not visible at higher levels of introspection,
specifically at the conversational level. We resolved this problem by finding
other means to filter malicious traffic that did not rely on the features that had
been removed by CICFlowMeter.

Switch Sabotage. Several rounds of rework were required between record-
ing the attack and validating the attack occurred. Layer 2 attacks, particularly
the Spanning Tree Protocol attack available from the tool Yersinia, were difficult
to validate. After verifying tool functionality and network configurations, we
determined that attacks were filtered by the switch. Once the configuration was
verified and the attacks re-run, the malicious traffic was visible on the network.
Quality assurance inspections on data samples are vital to ensure the intended
activities are represented in collected data. Interestingly, if we had used au-
tomated means of labeling malicious traffic, we may not have determined that
there was a configuration problem at the networking level.

8. Future Work

Workarounds required to obtain unencrypted data increasingly make the
data more artificial. Datasets, and the machine learning algorithms that depend
on them, should consider the reality that payloads will be encrypted. Future
work could investigate means of detecting anomalous traffic without reliance on
cleartext.

Additional work could also capture data from networks containing both en-
terprise and operational technology (OT) network traffic as the vast majority of
datasets in this area focus on ISP- or enterprise-level IT traffic. Few datasets are
available with OT-specific protocols or hybrid networks containing a business

18

enterprise network attached to a control system network. However, the rise of
the industrial Internet-of-Things (IIoT) means such complex hybrid networks
will become increasingly connected and vulnerable [44].

Participation from live pentesters was limited. A virtual testbed or range,
or utilizing a capture the flag event, could enable further participation beyond
local geographical regions. Future iterations of this research would benefit from
further automation when deploying changes to the range that are now available
from modern Infrastructure-as-a-Service providers. A larger scope of attacks
linked to a framework such as MITRE’s ATT&CK framework would aid in
applicability to professional security operations center analyst task pipelines.

9. Conclusion

In this paper we have presented the design of a framework used to collect
CUPID, which to our knowledge is the first publicly available, labeled network
traffic dataset with human pentester activity. The network activities within
CUPID are representative of modern enterprise networking. The goal of CUPID
is to facilitate further investigation of anomaly-based intrusion detection sys-
tems. We have also provided discussion about design choices, their inherent
challenges, and how we overcame them. We hope that our lessons learned will
help others to create useful intrusion datasets with pentesters in the future.

Acknowledgments

This work is supported in part by NSF grant OAC-2115134, OAC-2001789,
NSF grant OAC-1920462, Colorado State Bill 18-086, and by a grant from the
Silicon Valley Foundation as an award through the Cisco Research Center. The
authors would like to thank Chris Shenefiel, Blake Anderson, and the security
professionals that donated their expertise to help make this research a success.

References

[1] Robin Sommer and Vern Paxson. Outside the closed world: On using
machine learning for network intrusion detection. In Proceedings of the
2010 IEEE Symposium on Security and Privacy, SP ’10, pages 305–316,
Washington, DC, USA, 2010. IEEE Computer Society.

[2] Idan Amit, John Matherly, William Hewlett, Zhi Xu, Yinnon Meshi, and
Yigal Weinberger. Machine learning in cyber-security-problems, challenges
and data sets. arXiv preprint arXiv:1812.07858, 2018.

[3] Markus Ring, Sarah Wunderlich, Dominik Grüdl, Dieter Landes, and An-
dreas Hotho. A toolset for intrusion and insider threat detection. In Data
Analytics and Decision Support for Cybersecurity, pages 3–31. Springer,
2017.

19

[4] Blake Anderson and David McGrew. Identifying encrypted malware traffic
with contextual flow data. In Proceedings of the 2016 ACM workshop on
artificial intelligence and security, pages 35–46. ACM, 2016.

[5] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detec-
tion. ACM Transactions on Information and System Security (TISSEC),
3(3):186–205, 2000.

[6] Markus Ring, Daniel Schlör, Dieter Landes, and Andreas Hotho. Flow-
based network traffic generation using generative adversarial networks.
Computers & Security, 82:156–172, 2019.

[7] M. Kacic, D. Ovsonka, P. Hanacek, and M. Barabas. Traffic generator based
on behavioral pattern. In The 9th International Conference for Internet
Technology and Secured Transactions (ICITST-2014), pages 229–223, Dec
2014.

[8] Colin Gilmore and Jason Haydaman. Anomaly detection and machine
learning methods for network intrusion detection: An industrially fo-
cused literature review. In Proceedings of the International Conference
on Security and Management (SAM), page 292. The Steering Committee
of The World Congress in Computer Science, Computer . . . , 2016.

[9] University of California Irvine. Kdd cup data, 1999.

[10] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba,
and Kumar Das. Analysis and results of the 1999 darpa off-line intrusion
detection evaluation. pages 162–182, 10 2000.

[11] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali Ghorbani. A detailed
analysis of the kdd cup 99 data set. IEEE Symposium. Computational
Intelligence for Security and Defense Applications, CISDA, 2, 07 2009.

[12] S Revathi and A Malathi. A detailed analysis on nsl-kdd dataset using
various machine learning techniques for intrusion detection. International
Journal of Engineering Research & Technology (IJERT), 2(12):1848–1853,
2013.

[13] Hee-su Chae, Byung-oh Jo, Sang-Hyun Choi, and Twae-kyung Park. Fea-
ture selection for intrusion detection using nsl-kdd. Recent advances in
computer science, 20132:184–187, 2013.

[14] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani. Toward credible eval-
uation of anomaly-based intrusion-detection methods. IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
40(5):516–524, 2010.

[15] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and
C. Wang. Machine learning and deep learning methods for cybersecurity.
IEEE Access, 6:35365–35381, 2018.

20

[16] P. Mishra, V. Varadharajan, U. Tupakula, and E. S. Pilli. A detailed
investigation and analysis of using machine learning techniques for intrusion
detection. IEEE Communications Surveys Tutorials, 21(1):686–728, 2019.

[17] A. L. Buczak and E. Guven. A survey of data mining and machine learning
methods for cyber security intrusion detection. IEEE Communications
Surveys Tutorials, 18(2):1153–1176, 2016.

[18] Waqas Haider, Jiankun Hu, Jill Slay, Benjamin P Turnbull, and Yi Xie.
Generating realistic intrusion detection system dataset based on fuzzy qual-
itative modeling. Journal of Network and Computer Applications, 87:185–
192, 2017.

[19] Markus Ring, Sarah Wunderlich, Deniz Scheuring, Dieter Landes, and An-
dreas Hotho. A survey of network-based intrusion detection data sets.
Computers & Security, 2019.

[20] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. To-
ward developing a systematic approach to generate benchmark datasets
for intrusion detection. Computers & Security, 31(3):357 – 374, 2012.

[21] Blake Anderson and David McGrew. Machine learning for encrypted mal-
ware traffic classification: Accounting for noisy labels and non-stationarity.
In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, pages 1723–1732, New
York, NY, USA, 2017. ACM.

[22] Sebastian Garcia, Martin Grill, Jan Stiborek, and Alejandro Zunino. An
empirical comparison of botnet detection methods. computers & security,
45:100–123, 2014.

[23] Rick Hofstede, Luuk Hendriks, Anna Sperotto, and Aiko Pras. Ssh
compromise detection using netflow/ipfix. ACM SIGCOMM computer
communication review, 44(5):20–26, 2014.

[24] Constantinos Kolias, Georgios Kambourakis, Angelos Stavrou, and Ste-
fanos Gritzalis. Intrusion detection in 802.11 networks: empirical evalu-
ation of threats and a public dataset. IEEE Communications Surveys &
Tutorials, 18(1):184–208, 2015.

[25] Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for net-
work intrusion detection systems (unsw-nb15 network data set). In 2015
military communications and information systems conference (MilCIS),
pages 1–6. IEEE, 2015.

[26] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward
generating a new intrusion detection dataset and intrusion traffic charac-
terization. 2018.

21

[27] Keysight. Perfectstorm. https://www.keysight.com/us/en/products/

network-test/network-test-hardware/perfectstorm.html, 2020.

[28] LLC. QoSient. Openargus. https://openargus.org/, 2020.

[29] Zeek. Zeek network security monitor. https://github.com/zeek/zeek,
2020.

[30] Gholamreza Farahani. Feature selection based on cross-correlation for the
intrusion detection system. Security and Communication Networks, 2020,
2020.

[31] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. To-
ward developing a systematic approach to generate benchmark datasets
for intrusion detection. computers & security, 31(3):357–374, 2012.

[32] DEF CON. Defcon 8, 10 and 11 ctf datasets. http://cctf.shmoo.com,
2000.

[33] G. B. White, D. Williams, and K. Harrison. The cyberpatriot national high
school cyber defense competition. IEEE Security Privacy, 8(5):59–61, Sep.
2010.

[34] Dwayne Williams. About the collegiate cyber defense competition. 2019.

[35] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. Planetlab: An overlay testbed for
broad-coverage services. SIGCOMM Comput. Commun. Rev., 33(3):3–12,
July 2003.

[36] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K. Wang, T. Lehman,
and P. Ruth. Fabric: A national-scale programmable experimental network
infrastructure. IEEE Internet Computing, 23(6):38–47, 2019.

[37] C. Elliott. Geni - global environment for network innovations. In 2008 33rd
IEEE Conference on Local Computer Networks (LCN), pages 8–8, 2008.

[38] Gregg Keizer. Windows by the numbers: Upgraders press pause. 2019.

[39] Cisco Umbrella. Cisco umbrella popularity list. https://s3-us-west-1.

amazonaws.com/umbrella-static/index.html, 2016.

[40] Qualys SSL Labs. Ssl pulse. https://www.ssllabs.com/ssl-pulse/,
2021.

[41] Allyson L Holbrook, Melanie C Green, and Jon A Krosnick. Telephone
versus face-to-face interviewing of national probability samples with long
questionnaires: Comparisons of respondent satisficing and social desirabil-
ity response bias. Public opinion quarterly, 67(1):79–125, 2003.

22

[42] Songhui Ryu, Baijian Yang, et al. A comparative study of machine learning
algorithms and their ensembles for botnet detection. Journal of Computer
and Communications, 6(05):119, 2018.

[43] Deris Stiawan, Mohd Yazid Bin Idris, Alwi M Bamhdi, Rahmat Budi-
arto, et al. Cicids-2017 dataset feature analysis with information gain for
anomaly detection. IEEE Access, 8:132911–132921, 2020.

[44] G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti. Design patterns for
the industrial internet of things. In 2018 14th IEEE International Workshop
on Factory Communication Systems (WFCS), pages 1–10, 2018.

10. Authors

Heather Lawrence is a security data scientist for ThreatKey
pursuing a PhD in Security at the University of Colorado,
Colorado Springs with a focus on the application of machine
learning to intrusion detection. She volunteers with B-Sides
Orlando and DEF CON.

Uchenna Ezeobi received his undergraduate degree in me-
chanical engineering from University of Minnesota and his
masters in computer engineering from university of New Mex-
ico. He is currently working on his Ph.D. in computer science
at University of Colorado Colorado Springs. His research in-
terest is in computer systems security, robotics, and appli-
cation of machine learning to high performance computers

Orly Tauil is an agile IT security engineer and passionate
penetration tester with broad expertise in the cybersecurity
and technology space.

Jacob Nosal is a security oriented platform and cloud en-
gineer focused on enabling success in cloud native develop-
ments teams.

23

Owen Redwood is a Principal Security Researcher at Re-
search Innovations Inc.

Yanyan Zhuang is currently an Assistant Professor at the
University of Colorado, Colorado Springs. Her research in-
terests include networked systems, security and privacy, and
software engineering. More information is available on her
homepage: http://www.cs.uccs.edu/~yzhuang/.

Gedare Bloom received his Ph.D. in computer science from
The George Washington University in 2013. He joined the
University of Colorado Colorado Springs as an Assistant Pro-
fessor of Computer Science in 2019. He was an Assistant
Professor of Computer Science at Howard University from
2015-2019. His research expertise is computer system secu-
rity with particular focus on real-time embedded systems.

He has published over twenty peer reviewed articles, and served as a program
committee member and technical referee for flagship conferences and journals
in these areas.

Appendix A. Pentester Interviews

This appendix includes the digitized version of the penetration tester re-
sponses. Each section includes the following 5 self-evaluation questions, followed
by a high level overview of what each participant was attempting to accomplish.

1. Rate yourself from 1 to 5 on how well you would evaluate yourself at
surfing webpages.

2. Rate yourself from 1 to 5 on how well you would evaluate yourself at
surfing a wiki.

3. Rate yourself from 1 to 5 on how well you would evaluate yourself at
uploading, downloading, modifying, or deleting files from a fileshare.

4. Rate yourself from 1 to 5 on how well you would evaluate yourself at
finding web application vulnerabilities.

5. Rate yourself from 1 to 5 on how well you would evaluate yourself at
leveraging web application vulnerabilities.

24

Appendix A.1. P1

Webpage Wiki Fileshare Finding vulns Using vulns
5 4 5 2 3

• Attempted brute forcing of the password for DVWA

• Attempted SQLi to get usernames and passwords or IDs

• Attempted XSS - got scripts to pop the box on low and medium

• Attempted command injection

Appendix A.2. P2

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 5 2 3

• Login and set security to Low

• Navigate to command injection page

• Run network layout recon

• Check file permissions for files I can add or edit

• Test adding files to the exec dir

• Use command injection to write a php file for stealing cookies

• Attempt to include page on the php inclusion page #woot!

• Check to see if cookie file was added

• Debug cookie thief file write permissions

• Check contents of php file with more

Appendix A.3. P3

Webpage Wiki Fileshare Finding vulns Using vulns
5 3 5 5 5

• Logged in

• Recon network

• Setup Burp Intruder

• Established reverse shell

• Escalated privileges to root

25

Appendix A.4. P4

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 4 1 1

Attempted to use Hydra to brute force the login

Appendix A.5. P5

Webpage Wiki Fileshare Finding vulns Using vulns
4 4 3 1 3

• Started the Brute Forcing exercise

• Started the Command Injection exercise. Running ‘127.0.0.1 && dir’ dis-
plays the host machine’s information.

• Started the File Inclusion exercise.

• Started the SQLi exercise.

Appendix A.6. P6

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 3 3 3

• Plan to attempt a blind SQLi in order to retrieve the login information
for the DVWA

• Decided to use Burp Suite to perform the SQLi

• Configured Burp Suite

• Attempted SQLi

Appendix A.7. P7

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 5 3 3

• I started my connection to DVWA

• I use the file upload to open a backdoor

• First I want to use weevely. I go to the directory cd /usr/share/weevely

• Run the Python ./weevely.py generate secret my.php. This creates a php
script called ‘my’ with the password of ”secret”

• Uploaded this script to DVWA

• Changed the filename in burp from php to jpg to bypass the image filter

• Enabled the back door

26

• Privileges determined to be nt authority system

• Made myself an account

• Made myself an admin

• Shutdown the box

Appendix A.8. P8

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 5 5 4

• nmap scan -t4 -f

• file inclusion for etc/passwd

• generate php w/ weevely - password.php

• reverse shell was not working because Kali is NAT’ed behind the host IP

• Weevely works despite being unroutable from the DVWA

Appendix A.9. P9

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 5 5 2

• Started port scan

• Saw https

• Ran gobuster against dvwa

• Moved to command injection

• Moved to SQLi

• Started Metasploit

• Searched for rdb

• Used the windows/smb/smb delivery Metasploit module

• Attempted command injection

• Crashed dvwa

27

Appendix A.10. P10

Webpage Wiki Fileshare Finding vulns Using vulns
5 5 5 1 1

• Login and drop security to low

• Navigate to command injection page

• Perform recon on webapp and server configs

• Attempt to append to webpage js frame to steal cookies

• js files are ro for the www-data user

• Search for more mutable server configs

• Attempt sqli to fetch user tables

• Lack of sql familiarity caused complications until timeout

Appendix B. Hardware & Software Specifications

Network Tap

Name Internal or Virtual IP

eno1 Internal 192.168.1.109
enp8s0 Internal 68:05:ca:53:c8:05 (no IP)

Table B.7: Network Tap Interfaces

• Ubuntu 64-bit version 18.04.2 LTS running on an Intel Xeon(R) CPU
E5-1607 v4 @3.10Ghz with 32 GB RAM and 1TB hard drive space.

Top Blade

• Windows Server 2016 Datacenter 64-bit running on an Intel Xeon(R) CPU
E5-2640 v4 @2.40Ghz with 32 GB RAM and 1TB hard drive space. Drones
were provided 1024 MB of RAM, 1 virtual processor, 40GB hard drive
space.

Bottom Blade

• Windows Server 2016 Datacenter 64-bit running on an Intel Xeon(R) CPU
E5-2640 v4 @2.40Ghz with 32 GB RAM and 1TB hard drive space. Unless
otherwise noted by *, VMs were provided 1024 MB of RAM, 1 virtual
processor, 40GB hard drive space.

28

Name Internal or Virtual IP

NIC1 Internal 192.168.1.4
vEthernet Internal 192.168.1.121
DroneVM01 Virtual 192.168.1.31
DroneVM02 Virtual 192.168.1.34
DroneVM03 Virtual 192.168.1.35
DroneVM04 Virtual 192.168.1.36
DroneVM05 Virtual 192.168.1.37
DroneVM06 Virtual 192.168.1.38
DroneVM07 Virtual 192.168.1.43
DroneVM08 Virtual 192.168.1.39
DroneVM09 Virtual 192.168.1.40
DroneVM10 Virtual 192.168.1.42

Table B.8: Top Blade Interfaces

Name Internal or Virtual IP

NIC 4 Internal 192.168.1.5
vEthernet Internal 192.168.1.120
DroneVM23 Virtual 192.168.1.108
DroneVM24 Virtual 192.168.1.45
DroneVM25 Virtual 192.168.1.46
DroneVM26 Virtual 192.168.1.47
DroneVM27 Virtual 192.168.1.48
DroneVM28 Virtual 192.168.1.49
DroneVM29 Virtual 192.168.1.50
DroneVM30 Virtual 192.168.1.51
DroneVM31 Virtual 192.168.1.52
DroneVM32 Virtual 192.168.1.53
DroneVM33 Virtual 192.168.1.54
Exchange* Virtual 192.168.1.9
Fileshare* Virtual 192.168.1.11
Wiki* Virtual 192.168.1.13

Table B.9: Bottom Blade Interfaces

Name Internal or Virtual IP

NIC1 Internal 192.168.1.7

Table B.10: Laboratory Controller Interfaces

Laboratory Controller

• Windows Server 2016 Datacenter 64-bit running on an Intel Xeon(R) CPU
E5-2630 v4 @2.20Ghz with 32 GB RAM and 9TB hard drive space.

29

Firewall

• Cisco ASA 5506-X with FirePOWER Services. 750 Mbps stateful inspec-
tion throughput. 4GB Memory. 8GB System Flash.

Switch

• Netgear GS724T - 24-Port Gigabit Ethernet Smart Managed Pro Switch
with 2 SFP Ports.

Pentesting Laptop

• Host: Windows 10 Home 64-bit running on an Intel(R) Core CPU i7-
7700HQ @2.80Ghz with 8 GB RAM.

• VM: Kali Linux Rolling Release 2019.4 with Burp Suite Community Edi-
tion x2.1.04 with 2 GB RAM.

30

