2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

Shining New Light on Useful Features for
Network Intrusion Detection Algorithms

Heather Lawrence, Uchenna Ezeobi, Gedare Bloom, Yanyan Zhuang
University of Colorado Colorado Springs
1420 Austin Bluffs Pkwy, Colorado Springs, CO, 80918, USA
hlawrenc @uccs.edu, uezeobi@uccs.edu, gbloom@uccs.edu, yzhuang@uccs.edu

Abstract—Network intrusion detection systems (NIDS)
today must quickly provide visibility into anomalous be-
havior on a growing amount of data. Meanwhile different
data models have evolved over time, each providing a
different set of features to classify attacks. Defenders have
limited time to retrain classifiers, while the scale of data
and feature mismatch between data models can affect the
ability to periodically retrain. Much work has focused
on classification accuracy yet feature selection is a key
part of machine learning that, when optimized, reduces
the training time and can increase accuracy by removing
poorly performing features that introduce noise. With a
larger feature space, the pursuit of more features is not
as valuable as selecting better features. In this paper, we use
an ensemble approach of filter methods to rank features
followed by a voting technique to select a subset of features.
We evaluate our approach using three datasets to show that,
across datasets and network topologies, similar features have
a trivial effect on classifier accuracy after removal. Our
approach identifies poorly performing features to remove
in a classifier-agnostic manner that can significantly save
time for periodic retraining of production NIDS.

Index Terms—Network Intrusion Detection Systems,
NIDS, Ensemble Feature Selection

I. INTRODUCTION

Network intrusion detection systems (NIDS) lever-
age signature-based [1], specification-based [2]-[4], and
anomaly-based techniques [5] to identify malicious traf-
fic. Signature-based techniques are effective against
known attacks but are unable to detect novel (zero-day)
attacks. Specification-based techniques can detect novel
attacks but require a subject matter expert to create a
model of legitimate behavior. Anomaly-based techniques
can also detect novel attacks but, being based on statistical
machine learning classifier models, are prone to false
positives that cause problems for usability like alert fa-
tigue [6], [7]. In addition, anomaly-based NIDS face prac-
tical challenges in deploying state-of-the-art classifiers on
modern networks and achieving reproducible results [8].
In an attempt to balance advantages and disadvantages,
modern security solutions tend to use a hybrid approach
with both signature- and anomaly-based techniques [9],
[10] to detect suspicious activity.

This work is supported in part by NSF grants OAC-2115134, OAC-

2001789, OAC-1920462, CNS-2046705, and Colorado State Bill 18-
086.

978-1-6654-3161-3/22/$31.00 ©2022 IEEE

Anomaly-based NIDS research relies on datasets to
improve state-of-the-art classification techniques [11]. An
evolving network traffic landscape not only requires that
these datasets are created using rigorous metrics [12], but
also causes datasets to become quickly outdated based
on the protocols and their versions in use, traffic profiles,
and attacks included. Hence, in evaluating anomaly-based
NIDS, dataset selection plays a large role in reported
performance. A mismatch between a chosen dataset and
target environment undermines the validity of decisions
made based on experimental results derived from that
dataset. Further, feature selection in NIDS can be chal-
lenging due to an imbalance in the amount of attack and
benign data as attack data can be harder to capture in
bulk.

Datasets are primarily stored in two ways: in raw data
(packet captures, or pcaps) or in a key-value store (a
network flow, or netflow). In packet captures, the unen-
crypted portion of the network traffic provides more data
to distill into features for machine learning and facilitates
more custom use cases. However, this also requires that
researchers architect their own network traffic parser to
distill raw traffic into machine learning features or to rely
on prior work [13], [14]. Prior work for packet capture
parsers have extracted 27 fields [14] and 80 fields [13]. A
network flow, or netflow, more formally defined as a set
of packets or frames passing an observation point in the
network during a specific time interval, describes network
communication from a top-down conversational level.
Netflows provide metadata about the conversation—such
as the source and destination IP address—in lieu of
the raw data, and therefore the original data cannot be
restored [15]. Prior work for netflows has increased the
feature space from 18 fields [16] to 491 fields [17].
The undetermined compatibility and efficacy of features
across these approaches adds difficulty in evaluating
and comparing experimental results. The challenges are
particularly salient when approaches evaluate combined
datasets to cover more attack patterns.

Regardless of the network capture data model, netflows
or pcaps, network data follows a non-stationary distri-
bution [14]. Anomaly detection models are considered
quasi-stationary in that machine learning models can

369

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

require retraining—daily [18], when a new attack is
discovered [19], or on-demand [20]. These requirements
place a constraint on model retraining time regardless of
the data model or size of the feature space. Retraining
time is defined as the amount of time spent training and
testing classification algorithms using the k-fold cross-
validation approach. As shown with the explosion of the
feature space facilitated by the maturity of the netflow
protocol to 491 mineable features [16], [17], there appears
to be prioritization to increase the number of features over
the need to select better features.

Effective feature selection leads to classifiers that re-
quire less memory and are faster to train and test, reduce
feature extraction costs, and lead to better generaliza-
tion [21]. While there is prior work in feature selection
research that applies filter methods to determine impact
on core metrics, the premise of our work attempts to
show a pattern of features that are poorly associated
with the label across common datasets. A feature’s poor
performance may be due describing a network artifact
with little correlation to the label.

In this paper, we approach the feature selection process
from a classifier-agnostic perspective based on correlation
among common feature selection algorithms to identify
such patterns across three different datasets and network
topologies. We make the following contributions:

o A classifier-agnostic approach for feature selec-
tion. We introduce an ensemble approach of filter
methods to rank 65 features followed by a voting
technique to select a subset of features. Our approach
does not rely on, or make explicit assumptions about,
the classifier that will utilize the selected features.

o Evaluation of ensemble feature selection vot-
ing. We evaluate our approach using three different
datasets with respect to classifier performance and
training time. We show that, across datasets and
network topologies, removal of similar features has
a trivial effect on accuracy.

« An analysis of the feature selection efficacy across
commonly-used machine learning classification
techniques. We show the classifier-agnostic nature
of our approach by applying it to typical classifiers.
We show that classifier performance converges be-
tween 30 to 50 features, depending on the dataset.
An ensemble of filter feature selection methods with
an aggressive feature elimination threshold achieved
the best classifier performance while substantially
reducing the training time.

The remainder of this paper is organized as follows.
Section II gives an overview of approaches for feature
selection. In Section III we provide the background
regarding the data models for feature extraction and the
datasets we use. Section IV presents our approach to
construct a classifier-agnostic feature elimination method,
and our experimental results are described in Section V.
Finally, Section VI concludes.

II. RELATED WORK

The closely related work involve approaches that re-
duce the feature space prior to training and tuning de-
tection algorithms. Three primary approaches are used to
eliminate features that are not relevant for classification:
wrapper, embedded, and filter methods. We briefly review
each of these methods before we discuss ensembles.

In wrapper methods, the classifier is wrapped in an
algorithm that searches the feature space for a subset
of features that yield the highest classifier performance
based on optimization of a predictor function [22]. Wrap-
per methods include genetic algorithms with logistic
regression [23], [24] and differential evolution with neural
networks [25]. A key drawback of wrapper methods is
that solving the optimization problem is time-consuming
to the detriment of our goal of identifying a feature set
for daily re-training of NIDS in production environments.
These methods are not recommended for high dimension-
ality datasets due to their computational complexity [26].

Filter methods rank features and select the highly-
ranked features for the classifier. Ranking is often based
on statistical techniques applied to a feature to determine
its correlation with the label or outcome. Common ap-
proaches include mutual information (MI) or information
gain [27]-[29] and analysis of variance (ANOVA) [30].
Filter methods are computationally efficient depending
on the time complexity of the filter used, but have low
precision and may fail to find linear correlations between
features [30].

Embedded methods seek to minimize the computation
time required to reclassify the optimal subsets gener-
ated in wrapper methods by combining both filter and
wrapper approaches in a two-stage process [31]. They
embed feature selection as part of the training process
without splitting the data into training and testing sets.
Selvakumar and Muneeswaran use mutual information,
a filter technique, prior to using a meta heuristic firefly
algorithm as a wrapper [32]. Kasongo and Sun used
Extreme Gradient Boosting (XGBoost) to select a subset
features from the UNSW-NB15 dataset in 2020 [33].
Unfortunately, embedded methods still require an iterative
convergence of an optimization step in the wrapper, thus
the time complexity remains high.

Ensemble methods combine multiple filters or filters
with embedded approaches. Krishnaveni et al. [34] in-
troduced a univariate ensemble feature selection method
using majority voting across three datasets. This ensemble
included MI, gain-ratio, Chi-squared, symmetric uncer-
tainty, and relief. The authors tested effectiveness on
the accuracy, detection rate, and false positive rate of
support vector machine, naive Bayes, logistic regression,
and decision tree. The reduction of build time and test
time was not reported. Seijo-Parso et al. [35] presented an
ensemble of filters and embedded methods tested using a
support vector machine classifier and different thresholds

370

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

to determine performance of the feature selection methods
across diverse datasets outside of the NIDS domain.

Comparing and aggregating the results of heteroge-
neous classifiers into a single signal is traditionally
approached through voting or stacking. Malhotra and
Sharma [36] conducted an empirical study to determine
the threshold of features on the Apache Click dataset and
found that only 33-50% of the features were necessary to
yield reasonable results. Seijo-Pardo et al [37] proposed
a programmatically chosen threshold based on a formula
on various datasets and found that automatic means were
faster than a numeric threshold cutoff after evaluating fea-
ture selection on SVM. They further showed that Fisher’s
discriminant ratio was effective at reducing the number of
features without significantly affecting performance [38].
A thorough exploration of ensemble approaches can be
found in [39] and [40].

Many of the aforementioned works rely on KDD99
and NSL-KDD datasets. These datasets do not have the
latest attack techniques and thus these results may not
be representative of new protocols or attack techniques.
Due to the time constraints involved in daily retraining of
NIDS data, we chose to pursue a filter-based approach.
Our ensemble of filter methods, however, employs a
voting algorithm in addition to statistical tests to deter-
mine which features are the most useful. We apply our
approach across multiple datasets and reveal features that
do not improve classifier performance across samples,
network topologies, and captured attacks.

III. BACKGROUND

In this section, we provide background information
regarding the data models that can be used to extract
features from network traffic (Section III-A) and our
selection criteria for datasets as well as the ones we chose
in this work (Section III-B).

A. Data Models

Supervised machine learning approaches for NIDS re-
quire structured and labeled data. Choosing a data model
to capture a dataset such as raw packet captures or a
(specific) network flow version incurs tradeoffs. Network
flows can save on space and processing, but as the flows
provide metadata about a network connection, feature
visibility can be lost as the original traffic cannot be
reconstructed [41]. Packet captures, or pcaps, retain this
visibility and provide a richer feature domain, but are
larger to store and take longer to process. Pcap data,
as they are in raw form, must be distilled into usable
machine learning features [13], [42] and labeled prior
to training a supervised classifier. By contrast, network
flows began as a proprietary standard and the features they
provide have evolved over time [43]. What began as a 5-
tuple data object providing IP addresses, port numbers,
and protocol, evolved to 18 fields in version 5 [43]. As

network flow protocols matured, the number of fields
expanded to the 491 fields available in RFC 7011 [17].

Other packet capture distillation methods include CI-
CFlowMeter [13], formerly known as ISCXFlowMeter,
and Joy [14]. CICFlowMeter is an open source tool that
generates bidirectional network flows from raw packet
capture data. It distills 83 features into a CSV file and
requires (manual) labeling after distillation. Joy [14], by
contrast, performs feature extraction by distilling packet
captures into JSON or IPFIX. The number of features
extracted is dependent on user configuration.

B. Dataset Selection Criteria and NIDS Datasets

To select appropriate datasets, we used the follow-
ing selection criteria. First, as netflows can irreversibly
convert a pcap, we prioritized datasets in the packet
capture format that were publicly available. Second, we
chose multiple datasets to capture different types of attack
traffic over a range of network topologies instead of
focusing in a single domain like solely SSH attacks [44]
or botnet traffic [45]. Further, the datasets only contained
actual traffic and not traffic generated by an algorithm.
Lastly, the dataset had to be labeled, or provide adequate
documentation to manually label, to provide the ground
truth. In the following we describe the three datasets we
chose for this work using these criteria.

1) CTU-13: Czech Technical University (CTU) re-
leased a dataset in 2011 [45] comprised of thirteen
network traffic captures focused on detecting botnet traffic
totalling 1.9GB. The dataset includes an edited packet
capture, a labeled network flow, and documentation re-
garding the capture timeline. The preprocessed netflow
form is provided in addition to the raw data. The raw
data was processed using CICFlowMeter and labeled
according to the dataset documentation that included
the source of malicious traffic by IP. Malicious traffic
included click fraud, port scans, fast flux, and author-
controlled malware. The network used to generate traffic
consisted of virtualized computers running Windows XP
SP2, what the botnet malware could run on at the time, on
a Linux Debian host bridged into the university network.
The final set contains both the traffic from the virtualized
computers and the university router, though some of the
traffic was removed due to privacy concerns.

2) CICIDS17: The Canadian Institute for Cybersecu-
rity (CIC) released the CICIDS2017 dataset [13] which
includes a variety of attacks including password brute
forcing, a heartbleed exploit, botnet traffic, traffic floods
resulting in denial of service and distributed denial of
service, a web server SQL injection, cross site scripting,
and an infiltration. These attacks are recorded on a
diverse network consisting of Windows and Ubuntu hosts,
a firewall, several switches, and using both Windows
8.1 and Kali as attacking nodes. With the array of
attacks, Sharafaldin et al. [13] provided a more general
dataset available in both raw packet capture and pre-

371

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

Network . -
Packet Process Network Feature Cleaning |- Feature Selection | _ Voting - IDS Training
Packet to Flow Analysis Algorithm
Capture
50%
Drop: « Flow ID o Ml o Borda Count
o Source/Dest IP « ANOVA o Normalized
* Timestamp o Chi Square Weight Sum U (100%
e Zero Variance Threshold

Agnostic Feature Elimination Method

Fig. 1: Feature

processed by CICFlowMeter [46]. It covers five days
of documented events resulting in 51.1GB of data. With
the 80 features provided by CICFlowMeter, they utilized
RandomForestRegressor, part of the scikit-learn library,
to select prominent features per attack prior to training a
standard set of classification algorithms.

3) CUPID: Like CICIDS17, the CUPID dataset! is
a more general dataset providing a variety of attack
types including webcrawling, reconnaissance techniques
like ARP and nmap, web attacks like SQL injection,
Layer 2 attacks, botnet traffic, and 10 pcaps generated
from human operators. It was generated on an isolated
test network consisting of Windows and Ubuntu hosts, a
firewall, a switch, and Kali provided an attacking node.
It is provided both in the pcap format and processed by
CICFlowMeter comprising approximately 50 GB of data.

IV. DESIGN

We now present our approach to construct a classifier-
agnostic feature elimination method. We use a pipeline
model, shown in Figure 1, to structure our approach and
in the following explain each stage subsequent to the
network packet capture. Note that this research does not
take into account adversarial attacks, like data poison-
ing, instead prioritizing on patterns revealed by feature
selection methods. Features that could easily be used to
introduce noise and affect the accuracy of the classifier,
like the timestamp or the IP address, were removed prior
to training.

A. Process Network Packets to Flows

We use the netflow output from CICFlowMeter [13]
as a common baseline for distilling features to feed
our classifier-agnostic feature elimination method. We
gathered the CTU-13 and CUPID datasets from their
respective repositories in the packet capture format and
processed the raw network data using CICFlowMe-
ter [13]. CTU-13 provides adequate documentation to
label the processed data. The CICIDS17 dataset is already
available in the CICFlowMeter format. This approach
facilitates analysis of the same 83 features over the three
datasets.

Thttps://www.cupid.directory/

elimination pipeline between packet capture and classification.

B. Feature Cleaning

Several features were eliminated prior to performing
the feature selection process. The Flow ID, Source IP,
Destination IP, and Timestamp were dropped. The Flow
ID is a categorical feature that uniquely identifies each
conversation. Using it would require one-hot encoding
which would greatly increase the feature space. The IP
address can be spoofed by an attacker and is also a
categorical feature, so using the source or destination
IP address could add noise to the dataset while also
increasing the feature space. The timestamp was dropped
as individual sensors, like IDSs or honeypots, could not
be shown to be synchronized across devices nor datasets
and obtaining simple temporal relationships requires ad-
ditional heuristics [47].

Finally, features with zero variance in any dataset,
as shown in Table I, were removed from all datasets.
For the CICIDS17 dataset, redundant features were also
removed (i.e., “Fwd Header Length”) and rows containing
“Infinity” and “NaN” were dropped [48]. As a result of
this feature cleaning, we are left with the same 65 features
over three datasets. Features that could not be analyzed
across all datasets were dropped. For example, if the
active standard deviation was a zero-variance feature in
CTU-13 and CUPID, it was also dropped from CICIDS17
as it was not possible to compare the feature across the
datasets. While it is possible that removing specific fea-
tures from a dataset may affect classifier performance, the
features were removed for feature parity across datasets.
Several features available natively from CICFlowMeter
processing were not available in the processed CICIDS
files and were removed from the other datasets to main-
tain feature parity including the source port, the active
series (active minimum, active maximum, active mean,
and active standard deviation), and several flag counts.

C. Feature Selection Analysis

After dropping the fixed features (known worthless and
zero-variance), we use an ensemble of filter techniques—
ANOVA, Chi-square, and MI—to determine dependen-
cies and relationships between features. Prior to applying
each filter we applied min-max normalization on each
feature to rescale into [0, 1].

372

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

TABLE I: Zero variance features in each dataset.

Feature Name Dataset
Backward Avg Bulk Rate CICIDS17
Backward Avg Packets CICIDS17

Active Std CTU13, CUPID
Active Mean CTU13, CUPID
Active Max CTU13, CUPID
Active Min CTU13, CUPID

Forward URG Flag

URG Flag Count

Subflow Backward Packets
Forward Avg Bulk Rate
Backward Avg Bytes/Bulk
Forward Avg Bytes/Bulk
Forward Avg Packets/Bulk
Backward PSH Flag
Backward URG Flag

CTU13, CUPID

CTU13, CUPID

CTU13, CUPID
CICIDS17, CTU13, CUPID
CICIDS17, CTU13, CUPID
CICIDS17, CTU13, CUPID
CICIDS17, CTU13, CUPID
CICIDS17, CTU13, CUPID
CICIDS17, CTU13, CUPID

ANOVA statistically determines if two or more features
are different by comparing the variance to estimate a
linear degree of dependence. Features are ranked higher
if they show a weak linear degree of dependence [49].
Chi-square evaluates the independence of two features by
measuring dependence between each non-negative feature
and class based on the class labels [50]. Mutual Infor-
mation (MI) measures the statistical dependence between
two random features. It is equal to zero if and only if the
two features are independent and higher values correlate
to dependence [27].

D. Voting

Since an ensemble of multiple filter methods has been
shown to perform better than a single filter method [34],
we explored two techniques—Borda count and min-max
normalized weight summation—to combine the rankings
of the three filter methods.

1) Borda Count: Borda count is a scoring rule used
in a voting system that gives candidates points according
to their voting rank position [51]. With a Borda count
rule, each filter selects candidate features with the highest
scores based on the statistical weights. m — j points are
given to a candidate that is ranked jth position, where m
is the total number of features (65 in our case); the points
awarded according to rank are m — 1, m — 2, ..., 0. The
scores given to each feature are summed across the three
filter methods and rank-ordered.

2) Normalized Weights Sum: In this approach, we
normalized the filter method weights to [0,1] to distribute
the weights uniformly. We sum the weights for each
feature across the three filters and rank-order the features
by their sums.

E. Thresholding

To determine the number of features to eliminate a
threshold must be identified. Rather than using a metric
to determine a quantitative threshold, we chose to use
the notion of diminishing returns to identify a threshold
rank above which adding more features does not im-
prove classifier performance. Our approach is inspired

by the theoretical approach of Mario et al. [52] but uses
an empirical method applied during the training phase.
Our approach finds the feature selection threshold by
modeling how feature selection affects one classifier’s
performance, and then applying that threshold on future
feature selection iterations with other classifiers. Classifier
performance converges after a set number of features
and the addition of more features does not improve
performance but adds to training time.

F. NIDS Training Algorithms

We use the decision tree, random forest, and k-Nearest
Neighbors (kNN) classifiers to determine the efficacy of
our approach. The decision tree classifier attempts to
predict a discrete target value from a set of observa-
tions. More specifically, we used the Classification And
Regression Trees (CART) algorithm, which differs from
traditional decision trees by constructing binary trees
using the feature and threshold that yield the largest
mutual information at each node. The random forest
classifier consists of a set of individual decision trees.
Each individual tree attempts to determine a class. The
class with the most votes from the individual trees wins.
The kNN classifier determines class membership based
on a plurality vote of the input’s neighbors.

The tree-based models use the raw values of the
selected features, while the kNN classifier uses the [0, 1]
normalized features. We chose these algorithms because
they are commonly used in NIDS [53], but we anticipate
that other classifiers could be used similarly.

V. EXPERIMENTS

In this section, we present the experiments and results
obtained from the process described in Section IV.

A. Experimental Setup

Our experiments were implemented in Python 3.8.1 on
a Microsoft Azure compute node, 4 cores, 28 GB RAM,
56GB disk.

B. Trivial Features

After performing our classifier-agnostic feature elimi-
nation technique, we mapped feature ranking as shown
in Figure 2. This annotated heatmap reflects the ranking
of each feature available across all three datasets after
processing by CICFlowMeter.

The feature ranking in Figure 2 is indicated by the
number and color where poor performers are darkly
shaded with a numerical rank closer to 65 and excellent
performers are indicated by a numerical rank closer to 0
and are lighter in shade. Notice that, when sorted by the
median of the rankings, certain features that are poorly
ranked across multiple analyses sink to the bottom of
the diagram. Consider the total_fwd_packets and
the total_length_of_fwd_packet, and their bwd
counterparts, that are represented towards the bottom of
Figure 2. These features indicate the number of packets

373

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

©° 9\0 N>
O o G? «\C‘\)\) “\0«0
10\0 §o\ o\) \‘\0(A
@ oo @ Feo o5 o
idle_min | 17 14 0 0 0 0 0
idle_mean 15 12 1 1 1 1
idie_max 14 9 2 2 2| 2
fwd_init_win_bytes 4 7 4 7
dstpot 18 20 3 4 3 4
packet_length_mean 7 13 9 17 9 17
average_packet_size 3 il 8 18 8 18
bwd_segment_size_avg 4 6 1 23 1N 23
bwd_packet_length_mean 2 5 10 22 10 22
packet_length_std 0 0 13 (24 13 | 24
flow_iat_max 5 4 14 14
flow_iat std 13 15 BEZ 8 IEIM 8
flow_packets/s [27 21 5 5 5 5
fwd_packets/s = 21 22 6 6 6 6
fwd_seg_size_min IEHEEN 15 19 15 19
flow_duration 11 16 [BEEE 11 BEEE 1
fin_flag_count 25 MENM 17 21 17 21
packet_length_max 8 10 20 20
bwd_packet_length_std 9 1 19 BE 19 BEEE
idle_std 2 10 12 10
bwd_packet_length_max 6 3 230 23
fwd_iat_mean | 20 260 27" 13 270 13
fwd_iat_std 12 8 25 12 25 12
subflow_bwd_bytes 25 16 [[27] 16 [127 o
fwd_iat max 10 7 16 16 £
fwd_iat_total = 19 | 17 15 15 =
packet_length_variance 1 2 o
down/up_ratio 21 250 21 125
fwd_iat_min 14 726 14 [26
flow_iat_mean 19 BEE o 9
bwd_init_win_bytes 22 24 [FI 24 [
fwd_packet_length_mean EEE 22 22
fwd_packet_length_max
fwd_segment_size_avg 280 X280 IEEE
flow_iat_min 18 18

bwd_packet_length_min
bwd_iat_max
packet_length_min [34 [44 | 55 |
bwd_jat_std | 23 [EEH SN S
fwd_packet_length_std IREEEIN INEZEINN IS TG oo
bwd_packets/s 26 || 23 BEZE 20 BEEM 20
subflow_fwd_bytes 27 7
bwd_iat_min 51 |'33 | 39 |
bwd_jat_total
bwd_iat_mean
psh_flag_count BEHNEZE
flow_bytes/s [EEH
fwd_packet_length_min [BEEH
fwd_header_length [IEHINIE: | 40 |
~fwd_psh_flags
total_length_of_fwd_packet PR 54 [52 [54 | 52]
rst_flag_count
total_length_of_bwd_packet HECH 24
bwd_header_length IESHIIEZ
ack_flag_count BEEH
total_bwd_packets
total_fwd_packets I
fwd_act_data_pkts HEH
ece_flag_count

60

Fig. 2: Ranked features across datasets, sorted by median.
A smaller value indicates a better ranking.

in a flow and the size of the packets to and from a host
but perform poorly across the datasets measured with
no ranking better than 24, where ranking is determined
by each feature selection method. We theorize that the
number of packets or their size is not highly correlated
to either a benign or malicious event and is thus poorly
rated. We suggest that poor performers may be due
to fundamental network processes that do not correlate
highly with a benign or malicious event and, despite
different network topologies and datasets, that they may
not be useful features for NIDS in general.

C. Classifier Performance Impact

Feature selection is intended to remove noise or bias
for a more robust classifier, but overly aggressive feature
elimination can greatly reduce classifier performance.
We designed an experiment to evaluate the impact of
our feature elimination method on classifier performance.
In this experiment, we processed the three datasets—
CICIDS17, CTU-13, and CUPID—through the pipeline
and measured the classifier performance using accuracy,
precision, recall, and F-1 score. Due to the imbalanced
nature of all three NIDS datasets, cross validation is
necessary to reduce possible bias in the classifiers; we
used 5-fold cross-validation that was repeated two times.

Figures 3, 4, and 5 show the classifier performance
for the Decision Tree classifier as the number of features
selected increases based on the individual results of the
three filter methods—MI, ANOVA, and Chi-square—and
the two ensemble approaches—Borda count and min-
max normalization. Classifier performance in general
converges between 30 and 50 features, depending on the
dataset. Eliminating 10-20 features results in the same
classifier performance as keeping all features in these
datasets. In addition, no individual filter method performs
best across the datasets, but the ensemble approach con-
sistently achieves the best classifier performance with
more aggressive feature elimination thresholds.

Table II shows the average re-training time for one
shuffle (of the cross-validation) and classifier performance
on the CTU-13 dataset for the three classifiers at the
following selected points in the feature elimination thresh-
olds: the full 65 features, the top 45 features as ranked
in Figure 2, and the top 10 features determined by the
Borda count and the min-max normalization approaches.

Tables III and IV show the same for the CICIDS17
and CUPID datasets. As seen in each table, the classifier
accuracy trained with the top 10 features is trivially
affected when compared to using the entire feature set, for
all three datasets on some of the classifiers. Notably, KNN
exhibited poor performance in precision and recall scores
for the CICIDS17 dataset, while the remaining classi-
fier performance results were reasonable. Furthermore,
the re-training time decreased between 35% and 96%,
depending on the dataset and the classification algorithm.
Overall, it makes little sense to use the full feature set, as
a careful selection of the feature pool as a subset is faster
to train on, while minimally affecting performance.

D. Re-training Time Impact

One of the goals of our approach for feature elimination
is to improve re-training time, as there are fewer opera-
tions required to train the classifier, while maintaining
performance. From Tables II to IV we observe that the
re-training time decreases when the number of features is
reduced. To determine the extent of the effect of feature
selection on re-training time, we modeled re-training time
across the datasets as the feature count decreases as

374

1.00
0.98
0.96

20.94
o

3092

F]

<0.90
0.88
0.86

Accuracy

Accuracy
o o
© ©
=3 @

o
©
=

o
©
N

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

. 0.9
*pepe S— L RO . . .~ PR 0.9 B A e iiade
& - 08« J# o8 iiadnt 08 e
[W 0.7 J 0.7 ot
\ 07| Voo Y.
c o [
| S { =06 | Sos |
©0.6] 3 |
| —— Ml 1] | *— Ml 205 *— Ml ~05 | *— Ml
| ANOVA 05 ANOVA 04l | ANOVA w 04l | ANOVA
Chi-Square 0.4 1 Chi-Square | Chi-Square : “ Chi-Square
“ Borda S Borda 0.3 * Borda 03 * Borda
1 Normalized Sum 0.3 Normalized Sum 0.2 Normalized Sum 0.2 Normalized Sum
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Features Number of Features Number of Features Number of Features
(a) Accuracy (b) Precision (c) Recall (d) F-1 Score
Fig. 3: Decision Tree classifier performance for CICIDS17 across feature selection approaches.
0.95 0.95 0.95
e R o e B Asaaaaass I Aaaaaasa s
i i 090 7 090 I 090 f
B ek s dalal P s dalal S k& dakal B ks dakal
¥ ¥ # ¥
ir 0.85 0.851 * 0.85
c o
k] = g
20.80 ©0.80 o080
—— M] —— Ml 2 —— Ml a —— Ml
ANOVA %0.75 ANOVA 0.75 ANOVA “0.75 ANOVA
Chi-Square Chi-Square Chi-Square Chi-Square
Borda 0.70 Borda 0.70 Borda 0.70 Borda
Normalized Sum Normalized Sum Normalized Sum Normalized Sum
0.65 0.65 0.65))
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Features Number of Features Number of Features Number of Features
(a) Accuracy (b) Precision (c) Recall (d) F-1 Score
Fig. 4: Decision Tree classifier performance for CTU-13 across feature selection approaches.
ot 1.00 kbR e 1.00 P T 1.00 Ty
'l 098 [N 095 | LJ 095 44y
et 096 | | 0.90 ﬁ 000 4
| s ol _0.85 @ \dl
i .50-94 “ [3 5085
| M 9092 || — M go.80 — M @ -
I ANOVA <000l ¥ ANOVA 0.75 ANOVA L0380 ANOVA
Chi-Square ’ | Chi-Square Chi-Square 0.75 Chi-Square
0.70
Borda 0.88 | Borda Borda Borda
Normalized Sum 0.86 Normalized Sum 0.65 Normalized Sum 070 Normalized Sum
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Number of Features Number of Features Number of Features Number of Features
(a) Accuracy (b) Precision (c) Recall (d) F-1 Score

Fig. 5: Decision Tree classifier performance for CUPID across feature selection approaches.

TABLE II: CTU-13 performance in terms of average re-training time (Time) in seconds, accuracy (Acc.), precision
(Prec.), recall (Recl.), and F-1 score.

Classifier Full feature set Top 45 features Top 10 feat. (Borda) Top 10 feat. (Normalized)
Time Acc. Prec. Recl. F-1 |Time Acc. Prec. Recl. F-1 |Time Acc. Prec. Recl. F-1 |[Time Acc. Prec. Recl. F-1

Random Forest | 76.9 .937 .938 .939 .937(62.4 .906 .908 .908 .906|32.7 .928 .930 .931 .92840.1 .930 .932 .933 .930
kNN 379.1 .886 .892 .890 .886(345.8 .854 .862 .858 .854(30.0 912 916 915 912|239 0914 918 917 0914
Decision Tree (9.9 .922 922 922 .922(7.2 .893 .893 893 .893(1.5 919 919 920 .919(|2.1 919 918 .920 .919

TABLE III: CICIDS17 performance in terms of average re-training time (Time) in seconds, accuracy (Acc.), precision
(Prec.), recall (Recl.), and F-1 score.

Classifier Full feature set Top 45 features Top 10 feat. (Borda) Top 10 feat. (Normalized)
Time Acc. Prec. Recl. F-1 |Time Acc. Prec. Recl. F-1 |Time Acc. Prec. Recl. F-1 |[Time Acc. Prec. Recl. F-1
Random Forest | 1265.7 .999 .998 .998 .998|1044.4 .999 .998 .998 .998]675.8 .973 980 .934 .955[609.9 .974 981 .937 .957
kNN 35463.9 989 .990 .977 .983]32093.4 .987 .988 .970 .979(504.6 .975 .981 .940 .959[3302.9 .965 .971 .919 .942
Decision Tree | 147.0 999 .998 .998 .998|104.8 .999 .998 .998 .99820.7 .973 980 .934 .955[18.0 .974 981 .936 .957
TABLE IV: CUPID performance in terms of average re-training time (Time) in seconds, accuracy (Acc.), precision
(Prec.), recall (Recl.), and F-1 score.
Classifier Full feature set Top 45 features Top 10 feat. (Borda) Top 10 feat. (Normalized)
Time Acc. Prec. Recl. F-1 [Time Acc. Prec. Recl. F-1 |Time Acc. Prec. Recl. F-1 [Time Acc. Prec. Recl. F-1
Random Forest [425.4 .999 997 .996 .997|418.4 997 .994 991 .992(321.9 .995 .989 .986 .987|180.5 .998 .997 .995 .996
kNN 8153.3 .992 990 .973 .981(7950.7 .992 .989 .971 .980[254.1 .993 .990 .974 .9822340.0 .993 .990 .976 .983
Decision Tree [33.5 .998 .996 .996 .996[21.9 .998 .996 .996 .996[9.0 .994 986 .985 .985]5.1 998 995 .994 .995

375

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

1401 4, —~— CTU-13
*"\ CUPID

K\F —— cicps

=
N
o

© ©

S o
7/
P

A

Training Time (s)
o
S

NS
o o
4

T Ao e

o

60 50 40 30 20 10 O
Number of Features

Fig. 6: Average re-training time (Decision Tree) vs Num-

ber of top K features using normalized feature selection.

shown in Figure 6 (using the MI feature selection, but the
re-training time results generalize across feature selection
approaches).

This figure reflects a linear decrease in average (per-
fold) re-training time across the three datasets. Each
dataset does not appear to follow the same trend for re-
training time, indicating that the impact of feature elim-
ination on re-training time varies by dataset. CICIDS17
has a much larger slope than CUPID or CTU-13, which
we attribute to its use of multinomial labels as opposed
to the binary labels used in CUPID and CTU-13. Note
that the expected re-training time may differ depending on
the method used, e.g., 5-fold cross-validation may have
an expected total re-training time of 5 times the average
re-training times shown, while simpler approaches such
as an 80/20 validation would have re-training time close
to the average (since we used a repeated 5-fold approach,
each shuffle is roughly one 80/20 split).

E. Summary of Results

We evaluated our approach on three different network
intrusion datasets (CICIDS17, CTU-13, and CUPID) us-
ing an ensemble of three filter techniques. Filter selection
is intended to decrease re-training time while maintaining
classifier performance—accuracy, precision, recall, and
F-1 score. Across the datasets analyzed, we found that
re-training time depends on multiple parameters of the
dataset, e.g., size, number of labels, and complexity of
flows, but that in all cases the re-training time increases
linearly (with varying slopes) as more features are se-
lected for classification.

After removing zero variance and redundant features,
we ranked the remaining features based on the filter
methods and two ensemble methods—Borda count and
min-max normalization. We found that several features,
like the number of packets sent or the packet length,
perform poorly on average regardless of the dataset and
the attacks captured in those datasets and may not be as
useful because the time between network flows does not
correlate strongly to either benign or malicious traffic.
Features that generally rank strongly across datasets, like

the destination port, may be useful as the destination port
is indicative of the service being attacked at that port. As
the number of available features to mine increases with
protocol maturity there may be features that generally
rank poorly as they are artifacts of the underlying network
architecture but not indicative of traffic behavior.

We analyzed the effect on performance across a spec-
trum of feature elimination from using all features down
to one feature with the lowest ranked feature removed at
each step. We found that classifier performance plateaus
between 30 to 50 features, depending on the dataset, while
re-training time continues to grow linearly, which moti-
vates a simple threshold approach to eliminate features
that do not contribute to classifier performance past the
plateau point.

VI. CONCLUSION

In this paper we have shown that a classifier-agnostic
ensemble approach can be used to rank and eliminate
features that contribute minimal value to classifier perfor-
mance in order to reduce training time. With an increasing
amount of data to select features and train and test on,
even a modest reduction to training time can result in sub-
stantial cost savings and operational efficiency especially
in production NIDS with daily packet capture data in the
terabyte range. As this work solely focused on evaluating
the feature space provided in the CICFlowMeter data
model, future work could compare NIDS data across dif-
ferent data models (CICFlowMeter, Joy, IPFIX) or non-
enterprise domains [54] to reveal relevant characteristics
across models.

REFERENCES

[1] J. Beale, Snort 2.1 Intrusion Detection, Second Edition. Syngress
Publishing, 2004.

[2] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou, “Specification-based anomaly detection: a new approach
for detecting network intrusions.” ACM, 2002, pp. 265-274.

[3] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “Saiducant:
Specification-based automotive intrusion detection using controller
area network (can) timing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 1484-1494, 2020.

[4] Y. Zhuang, E. Gessiou, S. Portzer, F. Fund, M. Muhammad,
I. Beschastnikh, and J. Cappos, “Netcheck: Network diagnoses
from blackbox traces,” in 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’14), 2014.

[5]1 C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
automotive controller area network intrusion detection systems,”
IEEE Design Test, vol. 36, no. 6, pp. 48-55, 2019.

[6] S. Axelsson, “The base-rate fallacy and the difficulty of intrusion
detection,” ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, pp. 186-205, 2000.

[71 W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and
A. Bates, “Nodoze: Combatting threat alert fatigue with automated
provenance triage,” in Network and Distributed Systems Security
Symposium, 2019.

[8] M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, “Toward cred-
ible evaluation of anomaly-based intrusion-detection methods,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 40, no. 5, pp. 516-524, 2010.

[91 A. Countermeasures, “Real intelligence threat analytics (rita),”

https://github.com/activecm/rita, 2020.

Zeek, “Zeek network security monitor,” https://github.com/zeek/

zeek, 2020.

[10]

376

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC)

R. Sommer and V. Paxson, “Outside the closed world: On using
machine learning for network intrusion detection,” in 2010 IEEE
symposium on security and privacy. 1EEE, 2010, pp. 305-316.

A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark datasets
for intrusion detection,” computers & security, vol. 31, no. 3, 2012.
1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic
characterization.” 2018.

B. Anderson and D. McGrew, “Machine learning for encrypted
malware traffic classification: accounting for noisy labels and non-
stationarity,” in Proceedings of the 23rd ACM SIGKDD Interna-
tional Conference on knowledge discovery and data mining, 2017.
J. Mao, Y. Hu, D. Jiang, T. Wei, and F. Shen, “Cbfs: A clustering-
based feature selection mechanism for network anomaly detec-
tion,” IEEE Access, vol. 8, pp. 116216-116225, 2020.

J. Quittek, “Information model for ip flow information export,”
Internet Requests for Comments, Internet Engineering Task
Force (IETF), RFC 5102, January 2008. [Online]. Available:
https://tools.ietf.org/html/rfc5102

B. Claise, “Specification of the ip flow information export (ipfix)
protocol for the exchange of flow information,” Internet Requests
for Comments, Internet Engineering Task Force (IETF), RFC
7011, September 2013.

L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure:
Finding malicious domains using passive dns analysis.” in Ndss,
2011, pp. 1-17.

J. V. Hansen, P. B. Lowry, R. D. Meservy, and D. M. McDonald,
“Genetic programming for prevention of cyberterrorism through
dynamic and evolving intrusion detection,” Decision Support Sys-
tems, vol. 43, no. 4, pp. 1362-1374, 2007.

F. Jemili, M. Zaghdoud, and M. B. Ahmed, “A framework for an
adaptive intrusion detection system using bayesian network,” in
2007 IEEE Intelligence and Security Informatics. 1EEE, 2007.

Z. Xu, G. Huang, K. Q. Weinberger, and A. X. Zheng, “Gradient
boosted feature selection,” in Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and
data mining, 2014, pp. 522-531.

H. Liu and H. Motoda, Computational methods of feature selec-
tion. CRC Press, 2007.

C. Khammassi and S. Krichen, “A GA-LR wrapper approach for
feature selection in network intrusion detection,” computers &
security, vol. 70, pp. 255-277, 2017.

——, “A NSGA2-LR wrapper approach for feature selection in
network intrusion detection,” Computer Networks, vol. 172, p.
107183, 2020.

F. H. Almasoudy, W. L. Al-Yaseen, and A. K. Idrees, “Differential
evolution wrapper feature selection for intrusion detection system,”
Procedia Computer Science, vol. 167, pp. 1230-1239, 2020.

A. Bommert, X. Sun, B. Bischl, J. Rahnenfiihrer, and M. Lang,
“Benchmark for filter methods for feature selection in high-
dimensional classification data,” Computational Statistics & Data
Analysis, vol. 143, p. 106839, 2020.

F. Amiri, M. R. Yousefi, C. Lucas, A. Shakery, and N. Yazdani,
“Mutual information-based feature selection for intrusion detection
systems,” Journal of Network and Computer Applications, vol. 34,
no. 4, pp. 1184-1199, 2011.

M. A. Ambusaidi, X. He, P. Nanda, and Z. Tan, “Building an
intrusion detection system using a filter-based feature selection
algorithm,” IEEE transactions on computers, vol. 65, no. 10, pp.
29862998, 2016.

S. M. Kasongo and Y. Sun, “A deep learning method with filter
based feature engineering for wireless intrusion detection system,”
IEEE Access, vol. 7, pp. 38597-38 607, 2019.

M. A. Siddigi and W. Pak, “Optimizing filter-based feature se-
lection method flow for intrusion detection system,” Electronics,
vol. 9, no. 12, 2020.

G. Chandrashekar and F. Sahin, “A survey on feature selection
methods,” Computers & Electrical Engineering, vol. 40, no. 1,
pp. 16-28, 2014.

S. B and M. K, “Firefly algorithm based feature selection for
network intrusion detection,” Computers & security, vol. 81, pp.
148-155, 2019.

[33]

[34]

(35]

(36]

(371

[38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

(52]

(53]

[54]

377

S. M. Kasongo and Y. Sun, “Performance analysis of intrusion
detection systems using a feature selection method on the unsw-
nb15 dataset,” Journal of Big Data, vol. 7, no. 1, pp. 1-20, 2020.
S. Kirishnaveni, S. Sivamohan, S. Sridhar, and S. Prabakaran,
“Efficient feature selection and classification through ensemble
method for network intrusion detection on cloud computing,”
Cluster Computing, pp. 1-19, 2021.

B. Seijo-Pardo, 1. Porto-Diaz, V. Bolén-Canedo, and A. Alonso-
Betanzos, “Ensemble feature selection: homogeneous and hetero-
geneous approaches,” Knowledge-Based Systems, vol. 118, 2017.
R. Malhotra and A. Sharma, “Threshold benchmarking for fea-
ture ranking techniques,” Bulletin of Electrical Engineering and
Informatics, vol. 10, no. 2, pp. 1063-1070, 2021.

B. Seijo-Pardo, V. Bol6n-Canedo, and A. Alonso-Betanzos, “On
developing an automatic threshold applied to feature selection
ensembles,” Information Fusion, vol. 45, pp. 227-245, 2019.

, “Testing different ensemble configurations for feature selec-
tion,” Neural Processing Letters, vol. 46, no. 3, 2017.

V. Bolén-Canedo and A. Alonso-Betanzos, “Ensembles for feature
selection: A review and future trends,” Information Fusion, vol. 52,
pp- 1-12, 2019.

B. A. Tama and S. Lim, “Ensemble learning for intrusion detec-
tion systems: A systematic mapping study and cross-benchmark
evaluation,” Computer Science Review, vol. 39, p. 100357, 2021.
M. Ring, D. Schlor, D. Landes, and A. Hotho, “Flow-based
network traffic generation using generative adversarial networks,”
Computers & Security, vol. 82, pp. 156-172, 2019.

B. Anderson and D. McGrew, “Identifying encrypted malware
traffic with contextual flow data,” in Proceedings of the 2016 ACM
workshop on artificial intelligence and security. ACM, 2016, pp.
35-46.

O. Santos, Cisco NetFlow Versions and Features.
2016.

R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “Ssh compro-
mise detection using netflow/ipfix,” ACM SIGCOMM computer
communication review, vol. 44, no. 5, pp. 20-26, 2014.

S. Garcia, M. Grill, J. Stiborek, and A. Zunino, “An empirical
comparison of botnet detection methods,” computers & security,
vol. 45, pp. 100-123, 2014.

G. Draper-Gil., A. H. Lashkari.,, M. S. I. Mamun., and A. A.
Ghorbani., “Characterization of encrypted and vpn traffic using
time-related features,” in Proceedings of the 2nd International
Conference on Information Systems Security and Privacy - Volume
1: ICISSP, INSTICC. SciTePress, 2016, pp. 407-414.

T. C. Ristenpart, “Time stamp synchronization of distributed
sensor logs: impossibility results and approximation algorithms,”
Ph.D. dissertation, University of California, Davis, 2005.

G. Farahani, “Feature selection based on cross-correlation for
the intrusion detection system,” Security and Communication
Networks, vol. 2020, 2020.

A. Binbusayyis and T. Vaiyapuri, “Comprehensive analysis and
recommendation of feature evaluation measures for intrusion de-
tection,” Heliyon, vol. 6, no. 7, 2020.

I. S. Thaseen and C. A. Kumar, “Intrusion detection model using
fusion of chi-square feature selection and multi class svm,” Jour-
nal of King Saud University-Computer and Information Sciences,
vol. 29, no. 4, pp. 462-472, 2017.

M. Diss, A. Tlidi, and E. Kamwa, “On some k-scoring rules for
committee elections: agreement and condorcet principle,” Revue
d’economie politique, vol. 130, no. 5, pp. 699-725, 2020.

M. Beraha, A. M. Metelli, M. Papini, A. Tirinzoni, and M. Restelli,
“Feature selection via mutual information: New theoretical in-
sights,” CoRR, vol. abs/1907.07384, 2019.

I. Aiyanyo, H. Samuel, and H. Lim, “A systematic review of
defensive and offensive cybersecurity with machine learning,”
Applied Sciences (Switzerland), vol. 10, no. 17, Sep. 2020.

G. Bloom, B. Alsulami, E. Nwafor, and I. C. Bertolotti, “De-
sign patterns for the industrial internet of things,” in 2018 I14th
IEEE International Workshop on Factory Communication Systems
(WFCS), 2018, pp. 1-10.

Cisco Press,

