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Abstract—Hardware containers provide fine-grained memory
access control to isolate memory regions and sandbox memory
references between components of an application. A hardware
reference monitor enforces a security manifest of memory access
permissions for the currently executing component. In this paper
we discuss how automation tools help software developers to
create the security manifest that configures hardware containers.

I. INTRODUCTION

Modern software developers build systems by combining

commercial off-the-shelf (COTS) components with glue code;

Basili and Boehm [1] estimate over 99% of instructions

executed are from pre-packaged COTS software. Application

developers can no longer ensure the security and reliability of

their own software without relying directly on the reputation

and warranties of COTS software vendors. In addition, ap-

plications often allow third-party plugins and extensions that

introduce new features to the application at runtime. COTS

components and third party plugins are untrusted code that,

without any security isolation primitives, can compromise

system security.

Commodity hardware and operating system (OS) isolation

techniques build on virtual memory primitives (pages or

segments) and can isolate untrusted code by wrapping each

untrusted component in a different virtual address space, e.g.

a process. The application then relies on the OS to mediate

communication between components. An example of such an

application is Chromium [2], a web browser that isolates web

page rendering from the main browser process. A drawback of

this approach is the overhead of going through the OS when

the active component changes.

Reducing the overhead of OS-mediated isolation is the

goal of research in hardware support for fine-grained memory

access control. Our prior work introduced hardware containers

[3], [4] for fine-grained isolation of code and data that targets

code written with a hierarchical control flow, which is nor-

mal in imperative, procedural, and object-oriented languages.

Containers isolate code at the granularity of functions as a

natural boundary for structured components and programs.

Fine-grained access control on word-sized data blocks further

restrict components from accessing data without permission.

A hardware reference monitor enforces a security manifest

that authorizes each component with permissions to read and

write data in memory and to transfer control flow to other

components. In this paper we discuss the software tools that

assist application developers in creating and configuring the

security manifest for hardware containers.

II. SECURITY MANIFEST

Each container wraps a set of functions and has strictly-

defined rules about the permissible actions and accessible

memory regions of its functions. Compile-time tools generate

the rules and store them in a security manifest that the

hardware reference monitor loads and enforces at runtime.

Application developers use these tools to generate memory

access permissions (read, write, execute) for three kinds of

memory references: static, instance-dependent, and dynamic.

Static Permissions. When processing a function, the com-

piler identifies and adds permissions to the security manifest

for memory accesses to global variables, constants, static

values, and code. These permissions are obtained easily during

normal compilation and are required for correct execution

of the code. In languages without type safety, such as C,

arbitrary memory accesses can be made by misusing pointers.

Many pointer references and simple pointer arithmetic can

be characterized by the compiler into safe, forward-only

sequential pointers [5] with precise memory ranges. When the

compiler can generate this range it can include permissions

in a static access list. Our tools need help to handle com-

plex pointer arithmetic and pointer assignments to arbitrary

locations. Software developers can use security annotations to

denote the expected ranges and permissions for memory that

such pointers should access. Note that requiring annotations

is not a limitation of our approach but instead a characteristic

of vulnerable software design. Security annotations might be

defined through either compiler directives or external config-

uration files that the linker reads. We are interested in mature

software tools to help create security annotations.

Instance-dependent Permissions. Each time a function exe-

cutes it creates new copies of its local variables. In hierarchical

or recursive control flows these variables are stored on a

stack. Function stack space requirements and accesses to local

variables are known at compile-time, but unlike static memory

accesses these instance-dependent accesses are relative to a

base address—the frame pointer. The compiler can create

access lists relative to the frame pointer that the hardware

reference monitor can enforce because it protects the frame



pointer. These access lists are part of the static permissions of

a program. Not all instance-dependent memory references can

be resolved at compile-time, especially if the mapping between

containers and functions is not one-to-one. Such references are

instead treated as dynamic memory references and are resolved

with programmatic directives.

Dynamic Permissions. Compile-time tools can extract ac-

cess lists for memory references as described above, but

dynamic memory references need special handling of permis-

sions at runtime. A design choice of hardware containers is to

bind dynamic memory permissions with each container’s in-

vocation rather than its static definition. Dynamic permissions

are handled by the hardware reference monitor as a stack in

parallel to the program’s call stack. New instructions support

delegating and revoking permissions on dynamic memory

ranges that are passed to a callee or returned to a caller.

We are interested in improving our tools to help programmers

configure dynamic permissions.

Today’s complex software makes it difficult to annotate

source code manually and to extract memory access permis-

sions even with compiler help, especially with pre-compiled

libraries and object code. For such cases, we propose that

execution traces be used to derive permissions. By giving

permissions for only tested and approved access patterns, the

security manifest avoids unauthorized access.

Another concern is that enforcing fine-grained access con-

trol for time-critical code may not be desirable, especially if

security can be achieved though other means. In such cases

relaxing component granularity by including several functions

in one component (container) decreases the overhead related

to permission checking.

III. RELATED WORK

Because of the demand for C, compiler assistance for

memory protection is an established area for practice and

research. A well-known solution is StackGuard [6], which

relies on the compiler to add canary values near the return

address on the stack and to verify those canary values before

returning from a function. Instead of detecting when memory

is overwritten, compiler analysis and code generation can

enable writing to a memory region only during operations on

the memory object in that region [7], but at a high cost of

extra instructions every time a memory object is written.

An alternative to protecting memory regions is to ensure

that code accesses data safely. Two approaches to support

safety in C include Cyclone [5] and CCured [8], both of which

change how pointers are used. Both approaches instrument

pointers with dynamic bounds checking and garbage collec-

tion. Whereas Cyclone limits pointer arithmetic, CCured adds

dynamic checking so that pointer dereferences can be verified

at runtime in situations that the compiler is unable to resolve

safely. Both approaches rely on compiler and programmer

assistance to achieve maximum security and performance,

but dynamic checking causes performance loss. The compiler

techniques that resolve at compile-time many pointer-based

references can help to create static permissions for our secu-

rity manifest; dynamic checks can be converted to dynamic

permissions.

An important aspect of security automation is mapping a

security policy to an enforcement mechanism. Huffmire et

al. [9] demonstrate compiler translation of an access policy

into a hardware execution monitor for enforcing policies

such as compartmentalization, access control, secure hand-off,

Chinese wall, and redaction. This execution monitor is meant

for hardware designs with isolated circuitry that communicate

through the monitor and is not applicable directly to software

applications that share hardware resources, but compilation

tools for security policies may benefit our approach.

IV. FUTURE WORK

The effectiveness of hardware containers is limited by the

ability of automation tools. Compilers can easily generate

the permissions for static and stack-local memory ranges, but

non-local (pointer) references and dynamic memory currently

require manual code annotations. In addition to generating per-

missions, we are also interested in tools that can map security

policies to sets of permissions, validate permissions against a

chosen security policy, and translate existing code annotations

such as mandatory access control labels (secret/public) or lan-

guage visibility labels (public/private/protected) into container-

enforceable memory access and control-flow permissions.
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