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Abstract

Object-oriented programming (OOP) encapsulates object

implementations with access specifiers like public and pri-

vate. Compilers can verify that code adheres to specifiers,

but verification can be broken in languages like C++ by

unchecked pointers. Thus, C++ programmers are taught that

“private is not secure.” The lack of isolation between ob-

jects frustrates memory protection in OOP code. We pro-

pose hardware and software support to confine memory ac-

cesses in fine-grained memory regions that isolate within

and between objects so that C++ programs can enforce en-

capsulation and prevent pointer-based exploits. Such support

makes private secure. Althoughwe target C++, our approach

handles generic techniques like inheritance, polymorphism,

dynamic dispatch, dynamic binding, and encapsulation.

Categories and Subject Descriptors Security and privacy

[Security in hardware]: Hardware security implementation

Keywords hardware containers, encapsulation

1. Introduction

Objects are the natural boundary for protection in an OOP

application. Memory protection can isolate between and

within objects (inter- and intra-object protection). Although

researchers have studied memory protection extensively

for unsafe languages like C, OOP languages like C++

present new challenges including inheritance and compo-

sition, polymorphism, constructors/destructors, exception

handling, friend classes, casting, and stack-instantiated ob-

jects. Even Java can violate language-based memory protec-

tion with reflection and the Java Native Interface.

∗Work supported by NSF CNS-0934725 and AFOSR FA9550-09-1-0194.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.

Copyright is held by the owner/author(s).

ACM 978-1-4503-1995-9/13/10.

http://dx.doi.org/10.1145/2508075.2508091

Commodity memory protection works at the granularity

of page and process, which is little help for object protection.

For such process-oriented memory protection, isolating code

modules requires dividing an application into processes and

replacing function calls with inter-process communication,

which imposes development and runtime costs.

In prior work, we introduced containers, hardware sup-

port for fine-grainedmemory protection [1]. In this paper, we

discuss adopting containers to support inter- and intra-object

protection in C++. Our approach aligns well with object in-

teractions without artificial processes. Our contribution is a

platform that secures direct memory access with OOP. Our

solution improves on the related work by being the first to

address private member runtime protection for C++.

2. Hardware Containers

A container is a set of bounded, contiguous ranges of in-

structions that is given permission to access memory regions.

Containers do not overlap instruction ranges, and each con-

tainer has a unique container identifier (cid). Code that be-

longs to the same container shares a cid. In OOP a method

is a useful unitary container. Methods in the same library or

class can be combined into a larger container for efficiency.

The container manager (CM) is a hardware reference

monitor that enforces permissions using content-addressable

memory to avoid affecting processor path delays [1]. The

CM enforces memory permissions—read, write, execute,

and delegate—on all memory regions. Delegate permission

controls permission propagation between containers. The

compiler infers permissions on arguments and automatic

variables. Permissions for dynamically-allocated memory

that the compiler is unable to resolve are granted program-

matically by permission-granting ALLOW instructions. AL-

LOW enables permissions on dynamic memory, and the

ALLOWM variant supports linked data structures [1]. A

call/return to another container causes a security context

switch, which pushes/pops the dynamic permissions onto

a permission stack mirroring the call stack. This stack obvi-

ates permission naming, lookup, and revocation.



2.1 Containers for C++

OOP features can cause problems for the CM: permissions

for private data must exist for object methods; exceptions

circumvent the call stack and access object fields, locals, and

global structures; inheritance and composition fragment ob-

ject memory layout; virtual functions and polymorphism re-

quire dynamic execution control flow and dynamic type in-

formation; and friend classes require permission to access

private fields. const, casts, and placement new are straight-

forward, but containers alone is insufficient for serialization.

To support private data we add ownership transfer of

memory regions with ALLOWD, and persistent private ac-

cess rights with ALLOWP. ALLOWD revokes access from

one container and delegates access to another. ALLOWP

creates a dynamic permission that a container with a spec-

ified cid can use—cid 0 gives permission for any container.

Allocators execute ALLOWD to pass ownership rights over

private memory to class constructors, which use ALLOWP

on private data with the cid of each member method, and

with cid 0 for public data. Adversarial code could use a de-

rived class to access protectedmembers, so the compiler

and CM treat protected like private, and instances of the base

class are not affected by (malicious) derived objects. Inheri-

tance and composition affect performance of delegating per-

missions because compilers split object memory layouts so

that a child (front-end) class cannot access private members

of ancestor (back-end) classes. Splitting the memory range

fragments the object representation and increases the over-

head of permission management, because the CM needs to

manage permissions for each private region of an object.

We have also identified solutions to problematic areas of

C++ but not yet implemented our solutions. For exception

handling, we propose to compartmentalize global state, re-

move trusted access from exception handling code, and sub-

ject exception handling to the same memory protection as

other code. We identify three necessary modifications: (1)

each container needs methods for stack unwinding and com-

pensation code; (2) global tables need to be divided into per-

container tables; (3) global lists must be placed in contain-

ers to confine operations done on these lists. Virtual func-

tions and polymorphism require inserting extra ALLOW in-

structions to handle dynamic binding, and dynamic permis-

sions may be needed for fields in a derived class that are not

present in the base class. Such permissions may be derived

by extending virtual tables with object permission layout in-

formation similar to runtime type identification (RTTI). The

same kind of RTTI can be applied to disambiguate multi-

ple inheritance. Containers can support friend classes if con-

structors create private permissions for all friends, which is

not a problem because classes already declare friends. The

compiler can extend the const attribute to CM enforcement

by using read-only permission on const data, but const

casts will not change the read-only permission. Other cast

operators can work directly. Placement new allows a pro-

Figure 1. Overhead for heap-allocated objects.

Figure 2. Overhead for stack-allocated objects.

grammer to place an object at a predetermined memory lo-

cation, which bypasses heap allocation, but otherwise uses

the same permission delegation as new—execute ALLOWD

to relinquish ownership of object memory. Serialization en-

ables object storage and transmission and requires additional

trusted code in the C++ runtime and kernel I/O.

3. Experiments and Results

We implemented our approach using GEMS/Opal [2] and

evaluate it using C++ microbenchmarks designed to stress

performance.Our microbenchmarkmimics C programwork-

loads and adds C++ object creation, access of private/public

members, and object destruction. We have not been able to

measure real applications due to time constraints. Results

show the percent overhead of execution time using our ap-

proach compared with the baseline: smaller is better.

Figures 1 and 2 show the costs for object creation and de-

struction on the heap and stack respectively for 1000 objects

and a varying percent of objects using private data. Memory

allocation, rather than permissions management, dominates

the performance for heap objects. For stack objects, over-

head reaches 11.68% when all objects have private data.

4. Conclusion

We demonstrated that fine-grained memory protection can

support OOP languages like C++. Future work can imple-

ment and evaluate more OOP features and real applications.
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