
Anomaly-based Intrusion Detection of IoT Device
Sensor Data using Provenance Graphs

Ebelechukwu Nwafor, Andre Campbell and Gedare Bloom
Department of Electrical Engineering and Computer Science

Howard University, Washington, DC 20059
Email: ebelechukwu.nwafor@bison.howard.edu

Abstract—The Internet of Things (IoT) has revolutionized the
way humans interact with devices. Unfortunately, this technologi-
cal revolution has been met with privacy and security challenges.
One major concern is the notion of malicious intrusions. A
common way of detecting a malicious intrusion is by treating an
attack as an anomaly and using anomaly detection techniques
to detect the source of intrusion. In a given IoT device, prove-
nance, which denotes causality between system events, offers
immense benefit for intrusion detection. Provenance provides
a comprehensive history of activity performed on a system’s
data, which indirectly ensures device trust. In this paper, we
propose an approach to intrusion detection of IoT devices that
leverages sensor data flow as seen through provenance graphs.
In this approach, an observed provenance graph is compared
to an application’s known provenance graph. This comparison
involves the dimensionality reduction of a provenance graph to a
vector space representation and similarity metric. We evaluated
our approach on an IoT application which simulates a climate
control system.

Index Terms—Anomaly detection, Intrusion detection, Internet
of Things, Data Provenance

I. INTRODUCTION

IoT devices have become an essential part of our daily lives
in commercial, industrial, and infrastructure systems. These
devices offer benefits to consumers by interacting with the
physical environment through sensors and actuators, which
allows device automation thereby improving efficiency. Unfor-
tunately, the proliferation of IoT devices has led to an increase
in the number of remotely exploitable vulnerabilities leading
to new attack vectors that could have disastrous financial and
physical implications. In 2015, security researchers demon-
strated a vulnerability on the Jeep vehicle which allowed
remote control of the automotive system over the Internet
[1]. In 2016, researchers discovered a vulnerability that allows
Internet connected smart thermostats to be subject to remote
ransomware attacks in which an attacker gains sole control of
the thermostat until a fee is paid [2]. These are a few examples
of some of the potential malicious vulnerabilities that could
have devastating, long-lasting impact on an IoT system.

This material is based upon work supported by the National Science
Foundation under Grant No. CNS-1646317 and the U.S. Department of
Homeland Security under Grant Award Number 2017-ST-062-000003. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the U.S.
Department of Homeland Security.

Intrusion detection [3] is the process of discovering mali-
cious exploits in a system. One way of detecting an intrusion is
by the use of anomaly detection techniques. An anomaly, also
referred to as an outlier, is data that deviates from the normal
system behavior. Anomalies could be indicative of a system
fault or that a system has been compromised by a malicious
event. Due to the sensitive nature of safety critical systems,
detecting malicious attacks is of utmost importance.

We propose an approach to identifying anomalous sensor
events using provenance graphs. This approach involves the
use of a similarity metric to compare observed provenance
graphs with provenance graphs derived from an application’s
normal execution. The result is an anomaly score which
is compared with a previously set threshold to classify an
observed provenance graph as either anomalous or benign. We
evaluate the effectiveness of our approach with a sample IoT
application that simulates a climate control system.

II. GRAPH SIMILARITY ANOMALY DETECTION

A. Provenance Graphs

Provenance denotes the origin of an object and all other
activities that occurred on that object. Data provenance, also
known as data lineage, can be defined as the history of all
activities performed on a data object from its creation to its
current state. Provenance ensures data trust [4]. It establishes
causality between entities contained in a data object through
information flow tracking thereby it allows for the verification
of a data source. Provenance is represented by a directed
acyclic graph (DAG) in which vertices represent data entities
and the edges correspond to the interaction between them.

Most provenance collection frameworks developed to track
provenance use system level event sequences in an operat-
ing system [5]–[7]. For IoT devices, containing limited or
no operating system functionality, it is essential to use a
provenance collection framework that places less emphasis on
an operating system and more emphasis on application level
information flow tracking. For our provenance graph genera-
tion, we use PAIoT [8], a provenance collection framework
which tracks the information flow of sensor-based events in
an IoT device. In PAIoT, sensor data containing observation
information is represented as a provenance graph. Sensor
events are instrumented in the application source code. Each
sensor data generated is defined as a tuple (t, e, a, s1, r1)
where t represents the time a sensor reading was generated, e

Agent
Activity
Entity

w
G
B

w
G
B

w
A
W

w
G
B

a
O
B
O

w
A
W

w
G
B

w
A
W

w
G
B

w
G
B

w
G
B

wDB wDB wDB wDB wDB wDB

wAW:wasAssociatedWith
wGB:wasGeneratedBy
aOBO:actedOnBehalfOf
wDB:wasDerivedBy

Fig. 1: Components of a provenance graph where nodes
represent types (agent, activity, and entity) and edges represent
relationships between types

represents the sensor data, a represents activity performed on
sensor data, s1 represents a sensor identifier, and r1 represents
the device information. Tuple information is constructed as
a provenance graph and stored in a graph database (Neo4j)
where further processing and query analytics can be performed
on provenance data.

A provenance graph is a directed acyclic graph, p = (V,E)
where V is a set of vertices V = {v1, ..., vn} such that
vi = (type, value) and E is a set of edges E = {e1, ..., en}
where ei = (vs, vd, label) and vs, vd are source and destination
vertices. Two vertices vx, vy are equal (denoted vx = vy)
if vx.type = vy.type and vx.value = vy.value. Two edges
ex and ey are equal (denoted ex = ey) if ex.vs = ey.vs,
ex.vd = ey.vd, and ex.label = ey.label. We use the union
operator ∪ over edge sets in the usual way of the union of
sets.

Types may take on one of the following: Agent, Entity,
and Activity. An agent is an actor that is represented by
an identifier (e.g., sensor or device name). An entity is an
event, which represents data that is produced as a result of
an activity. An activity is an action performed by an agent or
entity (e.g., read, update, create, delete). label takes on one of
the following values: wasGeneratedBy, used, wasInformedBy,
wasDerivedFrom, wasAttributedTo, wasAssociatedWith, acte-
dOnBehalfOf.

B. Graph Similarity

Similarity is a measure of how identical two objects are,
for example, by measuring the angle between objects (us-
ing cosine similarity) or a linear distance (using euclidean
distance) between the objects. In this work, we use cosine
similarity as our similarity metric. This was inspired by the
use of information retrieval techniques for query ranking. e.g.,
given a corpus D = {d1, ..., dn}, and query, q, how do we
find document(s) {dx,dy} which are similar to q and rank
them by order of importance. Cosine similarity is a measure
of orientation between two non-zero vectors. It measures the

cosine of the angle between the vectors. Two vectors which
are at an angle of 90◦ have a similarity of 0, two vectors
which are identical (with an angle of 0◦) have a cosine of 1,
and two vectors which are completely opposite (with an angle
of 180◦) have a similarity of -1. Since we are concerned with
the similarity between vectors, we are only concerned with the
positive values bounded in [0,1]. The cosine similarity between
two vectors, X and Y , is computed by:

cos (θ) =
X · Y

‖X‖ · ‖Y‖
=

∑n
i XiYi√∑n

i X
2
i ×

√∑n
i Y

2
i

In order to apply cosine similarity between provenance
graphs, we compute a vector representation which reduces
the graph into an n-dimensional vector space where n rep-
resents the total number of edges contained in the union
of all edge sets. Figure 2 illustrates the vector space con-
version of provenance graphs. p1, and p2 which con-
sists of vertices A,B,E, F,G, I, J, S,R and edge labels
aOBO,wAW,wGB,wDB. The vector space representation
of u1 is the occurrence of edges contained in the edge set
of graph p1, which are also found in the collective union of
edge sets. Algorithm 1 further outlines the concept of graph
to vector conversion.

C. Anomaly Detection on Provenance Graphs

Anomaly detection involves the use of rule-based, statistical,
clustering or classification techniques to determine normal
or anomalous data instances. The process of determining all
anomalous instances in a given dataset is a complex task.
A major challenge in anomaly detection is providing the
right feature set from the data to use for detection. Another
challenge exists in defining what constitutes as normal system
behavior. Most anomaly detection using point-based data often
fail to include the dependencies that exist between data points.

Due to the ubiquitous nature of IoT devices, there are a wide
array of vulnerabilities associated with them. In designing
our anomaly detection framework, we expect an attacker’s
footprint is reflected through the data flow as depicted in the
provenance graph. Our algorithm detects attacks such as false
data injection, and state change as depicted in information flow
of sensor events in provenance graphs.

Algorithm 1: Graph to vector conversion.

1: procedure GRAPHTOVECTOR(E,EG)
2: n← |EG|
3: Q[k], Q[i]← 0, 0 ≤ i < n
4: for ej ∈ E do
5: for eg ∈ EG | 0 ≤ g < n do
6: if ej = eg then
7: Q[g]← Q[g] + 1
8: end if
9: end for

10: end for
11: return Q
12: end procedure

S.N B E S C F G H F G

D.N A B B B E S C G H

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB

1 1 0 0 1 0 0 0 0 1 1 1 1 1 11 1 1 1 1 1 1 1 1 0 0 0 0 0 0

S.N B E R L F I J F I

D.N A B B B E R L I J

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB

S.N B E S C F G H F G R L I J F I

D.N A B B B E S C G H B B R L I J

Label aOBO wAW wAW wAW wGB wGB wGB wDB wDB wAW wAW wGB wGB wDB wDB

Global Edge Set

u"u#

Edge SetEdge Set

p% p&
A

E L

F J

R

B

I

w
G
B

a
O
B
O

w
G
B

w
A
W

w
G
B

wDB wDB

A

E C

F H

S

B

G
w
G
B

a
O
B
O

w
G
B

w
A
W

w
G
B

wDB wDB

Fig. 2: Provenance graph conversion to vector space. ux, uy vectors generated from both provenance graphs.

Algorithm 2: Detection algorithm given an observation phase
graph set, P , a detection phase graph, p, and a threshold.

1: procedure GRAPHANOMALY(P, p, threshold)
2: INPUT: P = {p0, ..., pn} | pi ← (Vi, Ei), 0 ≤ i ≤ n.
3: EG ← ∪ni=0Ei

4: Q← GraphtoV ector(p,EG)
5: Z ← {}
6: for pi ∈ P do
7: Ni ← GraphtoV ector(pi, EG)
8: z ← Cosine Similarity(Q,Ni)
9: Z ← Z ∪ zi

10: end for
11: sval ← min(Z)
12: if sval ≥ threshold then
13: return normal
14: end if
15: return anomaly
16: end procedure

Many IoT devices implement a control systems in which
sensor data is used as an input in a feedback loop to an
actuator. The operations of most control systems are regular
and predictable. For example, in a thermostat application, tem-
perature readings generated might be converted from Celsius
to Fahrenheit and utilized as feedback to an actuator. Each
iteration of a control loop sequence generates a path in a
provenance graph. This notion can be leveraged to define an
expected provenance graph for each application.

The expected regularity of provenance graphs in IoT appli-
cations motivates a supervised learning approach to anomaly

detection. This approach consists of two phases: observation
phase, also known as the training phase, and the detection
or test phase. In the observation phase, the system collects
provenance data considered to be a representation of the
normal system behavior. In the detection phase, the provenance
graph set is compared with the provenance graph derived from
subsequent observations to determine if an anomaly exists by
measuring similarity between this graph and the provenance
graph set. Note that provenance graphs from the observation
and detection phase form a graph set. A global edge set, EG

represents the union of edge sets contained in a graph set.
Algorithm 2 is the graph anomaly detection function given an
observation phase graph set, P , and a detection phase graph, p.
Z represents a list of the cosine scores from comparing each of
the provenance graphs in the observation phase graph set with
a detection phase graph. A function, calculateAnomalyScore
is used to determine the anomaly score, which is based on the
minimum cosine similarity score of elements contained in Z.

III. EXPERIMENT

The experiment evaluation serves as a preliminary study to
confirm the correctness of our theoretical approach in detecting
anomalous instances between provenance graphs. We evaluate
our intrusion detection algorithm by implementing an IoT
application which simulates a climate control system. Climate
control systems ensure a proper functional environment for
people and machinery. Constant irregularities in temperature
could have devastating effects on industrial machinery. This
system consists primarily of a heating ventilation and air
conditioning (HVAC) system which uses temperature and
humidity data to regulate environmental conditions within a
building. We utilize a publicly available dataset [9] which

0 10 20 30 40 50
Weeks

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
o
si

n
e
 S

im
ila

ri
ty

Fig. 3: Provenance graph comparison of climate control system
by week.

consists of a year’s worth of longitudinal data on the thermal
conditions, related behaviors, and comfort of twenty-four
occupants in a medium-sized building generated at a period of
fifteen minutes. We utilize the temperature and humidity data
as input to our simulation. We generate provenance graphs
for each week of the year. We compare the provenance graph
generated in consecutive weeks to see how they differ using
our graph similarity approach (i.e., week 1 compared to week
2, week 2 compared to week 3 etc.).

Figure 3 depicts the cosine similarity between provenance
graphs generated from the first occupant by preceding weeks.
Ensuring a proper threshold score is used for detection is
an important task that requires extensive knowledge of the
application domain. The threshold is manually set to a value
which is defined by domain experts. For automatic anomaly
threshold detection, one can use prediction methods to define
an anomaly score. As an example, a threshold might be set
to 0.15 in which all of the scores below the threshold are
considered anomalous. Since the dataset does not contain
attacks, the declines shown in Figure 3 would likely cause
false positives.

IV. RELATED WORK

Liao et al [10] characterize a system’s normal behavior by
the frequency of unique system calls which are converted into
a vector space representation. Stephanie et al. [11] define a
human immune system inspired intrusion detection analyzing
system call sequences. Yoon et al. [12] developed intrusion
detection on embedded systems by analyzing system call
frequencies clustered using k-means. Manzoor et al. [13]
proposed a centroid based clustering anomaly detection for
instances of streaming heterogeneous graphs in real time.
Papadimitriou et al [14] proposed five similarity algorithms
for comparing the similarity of web graphs. Xie et al. [15]
proposed a provenance-aware intrusion detection and analysis
(PIDAS) system using provenance graphs generated from
system calls which reveals interactions between files and pro-
cesses. Our approach differs from prior work because we focus

on anomaly detection through information flow sequences of
sensor data as represented by provenance graphs.

V. SUMMARY AND CONCLUSION

In this paper, we propose an anomaly detection algorithm
for detecting anomalous instances of sensor based events in an
IoT device using provenance graphs. We evaluate our approach
with a preliminary study on an IoT application which simulates
a climate control system. Current implementation of our
anomaly detection algorithm works with offline data. Future
work would include implementation for real-time detection.
We also plan on conducting further experimentation to identify
the false and true positive rates of our algorithm using select
IoT application dataset.

REFERENCES

[1] A. Greenberg, “The jeep hackers are back to prove car hacking can get
much worse,” 2015. [Online]. Available: https://www.wired.com/2016/
08/jeep-hackers-return-high-speed-steering-acceleration-hacks/

[2] D. Raywood, “Defcon: Thermostat control hacked to host ransomware,”
2016. [Online]. Available: https://www.infosecurity-magazine.com/
news/defcon-thermostat-control-hacked/

[3] A. Lazarevic, V. Kumar, and J. Srivastava, Intrusion Detection: A Survey.
Boston, MA: Springer US, 2005, pp. 19–78.

[4] E. Bertino, Data Trustworthiness—Approaches and Research Chal-
lenges. Cham: Springer International Publishing, 2015, pp. 17–25.

[5] T. Pasquier, X. Han, M. Goldstein, T. Moyer, D. Eyers, M. Seltzer, and
J. Bacon, “Practical whole-system provenance capture,” in Symposium
on Cloud Computing (SoCC’17), ACM. ACM, 2017.

[6] R. H. Zakon, Ed., 28th Annual Computer Security Applications Confer-
ence, ACSAC 2012, Orlando, FL, USA, 3-7 December 2012. ACM,
2012.

[7] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. Seltzer,
“Provenance-aware storage systems,” in Proceedings of the Annual
Conference on USENIX ’06 Annual Technical Conference, ser. ATEC
’06. Berkeley, CA, USA: USENIX Association, 2006, pp. 4–4.

[8] E. Nwafor, D. Hill, A. Campbell, and G. Bloom, “Towards a provenance
aware framework for internet of things devices,” in Proceedings of the
14th International Conference on Ubiquitous Intelligence and Comput-
ing, ser. UIC ’17. San Fransisco, CA, USA: IEEE Computer Society,
2017.

[9] J. Langevin, P. L. Gurian, and J. Wen, “Tracking the human-building
interaction: A longitudinal field study of occupant behavior in air-
conditioned offices,” Journal of Environmental Psychology, vol. 42, no.
Supplement C, pp. 94 – 115, 2015.

[10] Y. Liao and V. R. Vemuri, “Using Text Categorization Techniques
for Intrusion Detection,” in Proceedings of the 11th USENIX Security
Symposium. Berkeley, CA, USA: USENIX Association, 2002, pp. 51–
59.

[11] S. A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using
sequences of system calls,” J. Comput. Secur., vol. 6, no. 3, pp. 151–180,
Aug. 1998.

[12] M.-K. Yoon, S. Mohan, J. Choi, M. Christodorescu, and L. Sha,
“Learning execution contexts from system call distribution for anomaly
detection in smart embedded system,” in Proceedings of the Second
International Conference on Internet-of-Things Design and Implemen-
tation, ser. IoTDI ’17. New York, NY, USA: ACM, 2017, pp. 191–196.

[13] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast Memory-efficient
Anomaly Detection in Streaming Heterogeneous Graphs,” in Proceed-
ings of the 22Nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: ACM,
2016, pp. 1035–1044.

[14] P. Papadimitriou, A. Dasdan, and H. Garcia-Molina, “Web graph similar-
ity for anomaly detection,” Journal of Internet Services and Applications,
vol. 1, no. 1, pp. 19–30, May 2010.

[15] Y. Xie, D. Feng, Z. Tan, and J. Zhou, “Unifying intrusion detection
and forensic analysis via provenance awareness,” Future Gener. Comput.
Syst., vol. 61, no. C, pp. 26–36, Aug. 2016.

