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Abstract—The Internet of Things (IoT) offers immense benefits
by enabling devices to leverage networked resources thereby
making intelligent decisions. The numerous heterogeneous con-
nected devices that exist throughout the IoT system creates
new security and privacy concerns. Some of these concerns can
be overcome through trust, transparency, and integrity, which
can be achieved with data provenance. Data provenance, also
known as data lineage, provides a history of transformations
that occurs on a data object from the time it was created to its
current state. Data provenance has been explored in the areas
of scientific computing, business, forensic analysis, and intrusion
detection. Data provenance can help in detecting and mitigating
malicious cyber attacks. In this paper, we explore the integration
of provenance within the IoT. We introduce Provenance Aware
Internet of Things System (PAIoTS), a provenance collection
framework for IoT devices. We evaluate the effectiveness of our
framework by developing a prototype system for proof of concept.

I. INTRODUCTION

The Internet of Things (IoT) is transforming home, indus-
trial and commercial automation exponentially and increas-
ing the number of devices connected to the Internet. Cisco
estimates that over 50 million devices will be connected to
the internet by 2020 [1]. With the increasing amounts of
connected heterogeneous devices, security and privacy risks
also increase. For example, vulnerabilities in a brand of baby
monitors allowed unauthorized access to devices whereby a
malicious intruder can view live feeds from a remote location
[2].

Due to the heterogeneity of devices and and the sensitivity
of data generated on IoT devices, trust is a critical step to
ensuring the security of IoT devices. This can be achieved
through data provenance which is a comprehensive history of
activities that occurred on an entity from its origin to its current
state. Provenance ensures confidence in the fidelity of data.
Provenance has been applied in domains such as scientific
workflows for experiment reproducibility, information security
as a form of access control, and also for intrusion detection.
For IoT devices (things) that produce lots of sensor-actuator
data, a workflow representation of sensor data can depict
dependency between sensor readings and information stored
or transmitted by the device.

In this paper, we introduce Provenance Aware Internet of
Things System (PAIoTS), a provenance collection framework
for IoT devices, in which provenance data is collected and
modeled to represent dependencies between sensor-actuator

readings and IoT entities. Most of the interconnected heteroge-
neous devices are embedded systems that require lightweight
and resource-efficient solutions as compared to general pur-
pose systems. This requirement is attributed to the constrained
memory and computing power of such devices. We also
contribute a provenance sensor model which provides a means
to convert sensor event traces to provenance model graphs.

II. BACKGROUND

In this section, we describe key concepts of data provenance,
IoT characteristics, and provenance models. We also provide
a smart home example for provenance collection in the IoT.

A. Internet of Things

In 1991, Mark Weiser, a pioneer of ubiquitous computing
envisioned the notion of computing interleaved in our daily
lives [3]. Kevin Ashton, an early pioneer of IoT, defines
the IoT as devices in our everyday lives which can be
identified connected to a network [4]. These devices can learn
from information gathered autonomously without human input
which allows for improvements in waste reduction and overall
standard of living. Buckley et al. [5] define the IoT as a
network of billions of machines communicating with each
other. Gubbi et al [6] defines the IoT as an interconnection of
sensing and actuating devices that allows data sharing across
platforms through a centralized framework.

We define the IoT as a network of heterogeneous devices
with sensing and actuating capabilities connected to internet-
based cloud services. IoT has applications in home automation,
smart health, automotive communication, machine to machine
communication, industrial automation. Pervasive connectivity
between heterogeneous devices allows them to share infor-
mation with each other and with cloud based data analytics,
which drives IoT. With analytics, IoT applications can learn
from user data to make smarter decisions.

IoT architecture represents a functional hierarchy of how
information is disseminated across layers between devices
which contain sensing and actuating capabilities and massive
data centers (cloud storage). Figure 1 displays the IoT ar-
chitecture and the interactions between the respective layers:
sensor and actuator, device, gateway and cloud. The base
of the architectural stack consists of sensors and actuators
that gathers information from the physical world (via sensors)
and manipulates it (via actuators) while interacting with the



Fig. 1. IoT Architecture Diagram. The arrows illustrates the interaction
between data at various layers on the architecture.

device layer. The device layer aggregates data from sensors
and actuators and forwards data to the gateway layer. The
gateway layer routes and forwards this data collected from
the device layer to the cloud layer for storage and processing.
Resource constraints decrease up the architectural stack, with
the cloud layer having the most resources (memory, power,
computation), and the sensor-actuator layer having the least.

B. Motivating Use Case

Creating a provenance collection system is beneficial to
IoT because it provides a means of verifying the integrity
of data in the heterogeneous interconnected devices thereby
building trust. Enabling provenance collection in IoT devices
allows devices to capture valuable information which enables
backtracking in an event of a malicious attack.

Fig. 2. Smart home use case scenario which demonstrates how provenance
can be used to detect a point of entry of malicious intrusion

Consider a smart home as illustrated in Figure 2 which
contains interconnected devices such as a thermostat which
automatically detects and regulates the temperature of a room
based on prior information of a user’s temperature preferences,

a smart lock system which can be controlled remotely and
informs a user via short messaging when a door has been
opened, a home security camera monitoring system, a smart
fridge which sends a reminder when food products are low etc.
In an event that a malicious intruder attempts to gain access to
the security camera remotely, provenance information can be
used to track the series of events to determine where and how
a malicious attack originated. Provenance can also be used as a
safeguard to alert of a possible compromise thereby protecting
against future or ongoing attacks.

C. Data Provenance

The Oxford English dictionary defines provenance as “the
place of origin or earliest known history of something” [7]. An
example of provenance can be seen with a college transcript.
A transcript is the provenance of a college degree, because
it identifies all of the courses satisfied in order to attain the
degree. In the field of computing, data provenance, also known
as data lineage, is the history of all activities performed on an
entity from its creation to its current state. Cheney et al. [8]
describe provenance as the origin and history of data from
its lifecycle. Buneman et al. [9] describe provenance from a
database perspective as the origin of data and the steps in
which it is derived in the database. We define data provenance
of an entity as a comprehensive history of activities that occur
on that entity from its creation to its present state.

Provenance is easily represented as an acyclic graph which
denotes causal relationships and dependencies between enti-
ties. Provenance consists of the following characteristics:

• Who: Provides information linking activities to an entity.
Knowing the “who” characteristic is essential because
it maps the identity of modification to a particular data
object. An example of “who” in an IoT use case is a
sensor device identifier.

• Where: Location information at which data transfor-
mation was made. This provenance characteristic could
be optional since not every data modification contains
location details. An example is a GPS coordinate.

• When: The time at which data transformation occurred.
This is an essential provenance characteristic. Being able
to tell the time of a data transformation allows for tracing
data irregularities. An example of this characteristic is a
timestamp that denotes when sensor data was read.

• What: The transformation applied on operations (create,
read, update, and delete) that can be performed on a IoT
data object.

D. Model for Representing Provenance for IoT

Provenance of sensor readings in an IoT device should
describe the dependency relationships between all entities
responsible for producing those readings. We adopt the Prove-
nance Data Model (PROV-DM) [10], a W3C standard which
conforms to Provenance Ontology (PROV-O) and is used to
depict dependencies between entities, activities and agents
(digital or physical). PROV-DM creates a common model that
allows for interchange of provenance information between



heterogeneous devices and is represented serialized in three
formats: XML, JSON and RDF.

PROV-DM contains two major components: types and rela-
tions. Types can be entities, activities, or agents. An entity is
a physical or digital object. An activity represents some form
of action that occurs over time. An agent takes ownership
of an entity, or performs an activity. Figure 3 illustrates the
types and relations contained in PROV-DM and their graphical
representation. Entities, activities and agents are represented as
oval, rectangular and pentagonal shapes respectively.

Fig. 3. Prov-DM respresentation showing types in the model (Entity, Activity,
and Agent) and the relationships between them

PROV-DM defines the following seven relationships be-
tween the types.

• wasGeneratedBy: Signifies the production of a new entity
by an activity.

• used: An entity generated by one activity has been
adopted by another activity.

• wasInformedBy: Signifies the exchange of an entity by
two activities.

• wasDerivedFrom: Represents a copy of information from
an entity.

• wasAttributedTo: Denotes relational dependency between
an entity and an agent when the activity that created the
agent is unknown.

• wasAssociatedWith: An agent created or modified the
activity

• actedOnBehalfOf: Delegation of authority from an agent
to itself or another agent to perform a particular respon-
sibility.

III. PROVENANCE-SENSOR MODEL

In this section, we introduce the Provenance-Sensor Model
and explain how PROV-O is used to convert sensor readings to
provenance. Sensor data contains observation information such
as temperature, and location details which can be transformed
to standardized data interchange formats (RDF, XML, JSON).
Sensor data are time series data which can be traced over
time. Trace data containing sensor readings are important but
do not depict dependency relationships when used alone. We
transform trace data to provenance to represent causality and

dependency relationships between entities in an IoT system.
Provenance can be represented as a directed acyclic graph
and the edge between two entities is considered a relation.
Relations between data objects follows provenance ontology
which depicts transformation between entities. We integrate
PROV-O and sensor data for better representation of depen-
dency relationships between trace data generated.

A single sensor might posses the ability to collect mul-
tiple trace data, td. For example, a sensor might be able
to collect sensor readings of temperature, location, humidity.
A combination of trace data at a particular point in time is
considered an event. We define an event for sensor s1 at time
t as e = {td1, ...tdn} where td1 is the first trace data collected
by s1 and tdn is the last which occurs at time t.

Adopting provenance ontology to IoT, we represent device
information as agents (prov:agents), the operation performed
on sensor readings (read, create, update) as a provenance
activity (prov:activity), and events as entities (prov:entity).
A sensor trace is defined as a tuple (t, e, a, s1, r1) where t
represents a timestamp, e an event, a an operation, s1 sensor
information and r1 device information.

1) Device with one sensor: Consider a humidity and tem-
perature sensor s1, connected to device r1, a Raspberry Pi.
Event e = {temperature, humidity} therefore the tuple
representation of trace data for sensor s1 at time t1 is
(t1, {temperature, humidity}, a, s1, r1). a is the operation
performed on the sensor. Each tuple is mapped to the Prove-
nance Ontology representation using the defined constructs in
section IV. Since s1 is contained in device r1, r1 forms an
edge with s1 with the used relation. (e.g r1 used s1).

Fig. 4. Provenance-Sensor Model

2) Device with multiple sensors: Figure 4 further illus-
trates the concept of mapping provenance to sensor data
using graphical representations from PROV-DM relations and
types. The figure depicts a device, r1, connected to three
sensors s1, s2, and s3 with events [e1, e2, ..., en]. Data is
generated by three identical temperature sensors, s1, s2 and s3.
The graph represents data dependency between r1, the three
sensors, the activity performed by the sensors (the sensors
generate data in this case) and the events. For each sensor,



the total number of tuple is equal to the number of events.
For example, sensor trace data from sensor s1 is represented
by four tuples: (t1, e1, create, s1, r1),(t1, e2, create, s1, r1),
(t1, e3, create, s1, r1), and (t1, e4, create, s1, r1). Each event
makes an edge with the preceding event. Edges between events
are denoted with a dotted arrow. This represents time depen-
dency between events and that each event occurs consecutively
at distinct time intervals.

Algorithm 1 presents the steps taken by PAIoT to map
sensor trace data into graph based provenance. F represents
a list of k tuples. For each tuple contained in F, s, and r1
represents sensor and device information respectively and are
defined as agents. e is defined as an event, a is defined as an
activity. p is a memory representation of provenance informa-
tion containing all provenance types and their relations. x and
y are a list of relations between sensor-device and activity-
sensor, respectively.

Algorithm 1: Provenance-Sensor Mapping

Function trace2Prov (F)
p ← createProvDocument()
for k ∈ F do

if s 6∈ p then
s ← createAgent()

if r1 6∈ p then
r1 ← createAgent()

e ← createEntity()
a ← createActivity()
if x 6∈ p then

x ← relateSensorToDevice()
if y 6∈ p then

y ← relateActivityToSensor()
z ← relateEntityToActivity()

return p

IV. PAIOTS SYSTEM IMPLEMENTATION

In this section, we outline PAIoTS, a trace-based provenance
collection system for IoT devices. Figure 5 displays the
system architecture. Sensor readings in the form of input and
output (I/O) events are recorded by the tracer component.
This component intercepts I/O and produces trace information
represented in Common Trace Format (CTF).

PAIoTS converts CTF trace data to provenance in our
Provenance-Sensor Model. This conversion can happen at any
layer of the IoT stack. CTF conversion to PROV-DM is done
using babeltrace. Babeltrace is a plugin framework which
allows the conversion of CTF traces into other formats. Trace
or provenance data is securely transmitted to a gateway and
later transmitted and stored in a cloud backend. Our backend
of choice is Neo4j, a graph database with support for efficient
storage, query and visualization of provenance data.

CTF contains a mandatory stream known as metadata.
Metadata contains information about other streams. It allows
parsing a stream without specifying a layout. CTF encodes

binary trace output information containing multiple streams of
binary events such as I/O activity. Each event can be broken
into streams. Streams allow for fast processing since they do
not have to be stored in disk before being sent over a network
or processed in memory.

Fig. 5. System Architecture for PAIoTS.

Our provenance collection system records transformations
of I/O data for devices connected in the IoT. For our imple-
mentation, we use several tools and hardware components in
the development of our prototype:

• Raspberry Pi is the microcontroller used to demonstrate
our approach. We chose Raspberry Pi because it is a
representation of what can be found on an IoT gateway
device. Raspberry Pi is a low cost, simple IoT demon-
strator.

• Neo4j is a graph database which allows optimized query-
ing of graph data such as provenance.

• Babeltrace is a trace converter tool to convert traces from
one format into another.

• barectf is a light weight generator of C code that generates
trace data in CTF.

• A yaml generator in barectf creates yaml configuration
files with information babeltrace needs to generate CTF
trace output. Configuration files contain settings such as
an application trace stream, packet type, payload type and
size.

V. RELATED WORK

Muniswamy-Reddy et al. [11] developed Provenance Aware
Storage System (PASS), a provenance collection system that
tracks system-level provenance of Linux file system. Prove-
nance information is stored in the same location as the file
system for easy accessibility, backup, restoration, and data
management. Provenance information is collected and stored
in the kernel space. PASS is composed of 3 major components:
provenance collector, provenance storage, and provenance
query. The collector keeps track of system level provenance.
It intercepts system calls which are translated into provenance
data and initially stored in memory. Provenance data is then
transferred to a file system in a kernel database, BerkleyDB
which maps key value pairs for provenance data for fast index
look up. Our approach addresses application level provenance
for memory constrained embedded systems.

Bates et al. [12] developed, HiFi, a system level provenance
collection framework for the Linux kernel using Linux Prove-



nance Modules (LPM), which utilizes Linux Security Modules
(LSM). LSM is a framework that was designed for providing
custom access control inside the Linux kernel. HiFi contains
three components: provenance collector, provenance log and
provenance handler. The collector and log are contained in the
kernel space while the handler is contained in the user space.
The collector uses LSM to record provenance data and writes
it to the provenance log. The handler reads the provenance
record from the log. The log is a storage medium which
transmits the provenance data to the user space. This approach
to collecting provenance data differs from our work since we
focus on memory constrained embedded systems which might
not contain an operating system or a file system.

RecProv [13] is a provenance system which records user-
level provenance, avoiding the overhead incurred by kernel
level provenance recording. It does not require changes to
the kernel like most provenance monitoring systems. It uses
Mozilla rr to perform deterministic record and replay by
monitoring system calls and non deterministic input. The
provenance information generated is converted into PROV-
JSON, and stored in Neo4j, a graph database for visualization
and storage of provenance graphs. In PAIoT, we convert
trace data to provenance and also use Neo4j for storage and
visualization of the provenance data however, our approach
focuses on the relationship between entities in a device with
limited computation and memory capabilities and also the
transformation of sensor data in these devices.

Spillance et al. [14] developed a user space provenance
collection system, Storybook that allows the use of applica-
tion specific extensions such as database provenance, system
level provenance, web and email servers. Storybook captures
provenance by intercepting system level events in the FUSE
file system and stores provenance data in MySQL. StoryBook
allows developers to implement provenance inspectors custom
provenance models for specific applications which are often
modified by different application (e.g web servers, databases).
When an operation is performed on a data object, the appropri-
ate provenance model is triggered and provenance data for that
data object is captured. StoryBook stores provenance infor-
mation such as open, close, read or write, application specific
provenance, and causality relationship between entities con-
tained in the provenance system. Provenance data is stored in
key value pairs using Stasis and Berkely DB. In our approach
to provenance collection, we are particularly interested in the
provenance of sensor data in memory constrained embedded
systems.

Lim et al. [15] developed a model for calculating the trust
of nodes in a sensor network by using data provenance and
data similarity as deciding factors to calculate trust. The value
of provenance signifies that the more similar a data value is,
the higher the trust score. Also, the more the provenance of
similar values differ, the higher their trust score. The trust
score of a system is influenced by the trust score of the sensor
that forwards data to the system. Provenance is determined by
the path data travels through the sensor network. This work
differs from our approach since the authors focus on creating

a trust score and do not emphasize how the provenance data
is collected.

Compton et al. [16] defines a model for the alignment
of Semantic Sensor Network (SSN), a semantic ontology
for representing sensor observation data and PROV-O. This
model contains details on how the sub-components of SSN
can be represented as provenance ontology. The model is only
suited only SSN and does not address other sensor semantic
representations. Our work focuses on providing a general
Provenance-Sensor alignment which is not tied to a specific
semantic ontology.

VI. CONCLUSION AND FUTURE WORK

In this paper, we motivate the need for integrating prove-
nance into the IoT system. We propose PAIoTS, a provenance
collection framework that provides provenance collection ca-
pabilities for devices in an IoT system. We plan to evaluate
PAIoT with IoT specific performance benchmarks.
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