
Controller Area Network Intrusion Prevention System
Leveraging Fault Recovery

Habeeb Olufowobi
Howard University
Washington, DC

habeeb.olufowobi@howard.edu

Sena Hounsinou
Howard University
Washington, DC

sena.hounsinou@howard.edu

Gedare Bloom
University of Colorado Colorado

Springs
Colorado Springs, CO
gbloom@uccs.edu

ABSTRACT
The ever-increasing demand for safety, comfort, and automation in
the automobile has increased their vulnerability to cybersecurity
risk and attacks. Automobiles now embed several electronic devices
to perform these functions, and the complexity in the design of
these systems increases along with the functionalities they offer.
These devices communicate through the vehicular network—such
as controller area network (CAN) and local interconnect network—
which are attractive targets for cyber attackers. In this paper, we
propose a novel algorithm to detect and recover from message
spoofing attacks aimed at distorting the operation of the CAN bus.
Using the predictable run-time behavior of CAN message frames
in our recovery process, we leverage the error handling capability
(bus-off state) of the CAN bus in a reboot-based recovery process
of the compromised network node. We implement this algorithm
in tandem with a hardware CAN controller as a detector node,
and we evaluate its effectiveness and performance in detecting and
recovering a compromised node.

CCS CONCEPTS
• Security and privacy → Intrusion/anomaly detection and
malware mitigation; Malware and its mitigation;

KEYWORDS
CAN, Intrusion Detection Systems, Intrusion Prevention System,
Automotive Security, Reboot Recovery, Data Injection
ACM Reference Format:
Habeeb Olufowobi, Sena Hounsinou, and Gedare Bloom. 2019. Controller
Area Network Intrusion Prevention System Leveraging Fault Recovery. In
ACM Workshop on Cyber-Physical Systems Security & Privacy (CPS-SPC’19),
November 11, 2019, London, United Kingdom. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3338499.3357360

1 INTRODUCTION
Recent development in the use of embedded devices and Inter-
net connectivity in the automobile has brought vehicles into the
Internet of Things (IoT). The vehicles reliant on these electronic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
CPS-SPC'19, November 11, 2019, London, United Kingdom
© 2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6831-5/19/11…$15.00
https://doi.org/10.1145/3338499.3357360

devices for primary functions bring concerns about their security.
Nowadays, a high-end automobile may embed up to 100 differ-
ent electronic control units (ECUs) to enhance the functionalities
and operations of the vehicle. The attack surface of vehicles con-
tinues to grow in proportion to each of these functionalities and
their concomitant increase in the complexity of the automobile
system. These ECUs communicate through the in-vehicle network
which includes the controller area network (CAN), local intercon-
nect network (LIN), FlexRay, and media oriented systems transport
(MOST). The CAN bus is the most commonly used network system
in the automobile, and it connects ECUs through a message broad-
cast protocol. The CAN bus was initially designed for automotive
applications and has been adopted in other applications such as
industrial automation. Unfortunately, the CAN bus implements no
security mechanism for the ECUs and their applications.

CAN bus has been shown to be vulnerable to remote and physical
attacks [5, 9, 12, 15] as it allows unauthorized node communica-
tion and the transmitted message frames between ECUs are not
encrypted or authenticated. Physical attacks can be accomplished
through the on-board diagnostic (OBD-II) port, while remote at-
tacks are achieved through the use of the wireless connectivity to
the network. Koscher et al. [12] were the first to demonstrate and
perform possible attacks on the vehicles by reverse engineering of
the ECU codes to control a range of vehicle functions. Similarly,
Checkoway et al. [5] andMiller and Valasek [15] have demonstrated
the evolution of cyber threats against automotive networks by re-
motely connecting to the vehicles to take over vehicular functions.
While other threats are still emerging, experience related to the
detection and defense of these threats remains low.

The design of security for the in-vehicle network has been chal-
lenging because the requirements for security are not accurately
defined while also considering the constraint of the available band-
width of the vehicular network protocols. Recently, standards such
as ISO/SAE 21434 [2] are being developed and the published J3061
cybersecurity guidebook for cyber-physical vehicle systems by Soci-
ety of Automotive Engineers (SAE) is a much-anticipated standard
to fill this gap in security engineering of modern vehicles [17]. An
essential requirement in considering a security mechanism for the
automotive in-vehicle is the algorithmic requirement of the lim-
ited computational power and memory resources of the system.
Hence, a security mechanism for the in-vehicle network should be
lightweight and computationally efficient while respecting network
errors and fault-tolerance.

Prior art has demonstrated a plethora of intrusion detection
system (IDS) approaches for CAN bus [21]. However, the response
mechanism of such IDSs has been woefully ignored, and designers

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

63

https://doi.org/10.1145/3338499.3357360
https://doi.org/10.1145/3338499.3357360

are left to wonder how to utilize an IDS alert in an automotive
system. In this paper, we describe an intrusion prevention system
(IPS) that can leverage an existing IDS and extend it with a reboot-
based attack mitigation and recovery mechanism. We leverage the
inherent error handling capability of the CAN bus called the bus-
off state to maneuver a compromised node into a recovery state
while it is under an active attack. Bus-off is a state in which the
ECU is disconnected from the network and not allowed to transmit
messages until in most cases it undergoes a reset.

The main contributions of this paper are:
(1) A practical approach for blocking and terminating malicious

message attacks while they transmit on the CAN bus.
(2) A method demonstrating how the error handling capability

of CAN bus may recover nodes under attack.
(3) Prototype and evaluation of the effectiveness and perfor-

mance of the proposed IPS.
The remaining portion of this paper is organized as follows:

Section 2 defines the threat and attack model and the underly-
ing assumptions of our proposed approach; Section 3 presents the
background on the CAN bus, its error handling capability, and the
security challenges. In Section 4, we describe the proposed detection
and recovery approach while Section 5 presents the implementa-
tion details of the IPS. Section 6 shows the experimental validation
and results while Section 7 discusses the related work. Section 8
concludes this paper and describes future work.

2 THREAT MODEL AND ASSUMPTIONS
The attack scenario considered in this paper is a spoofing attack
in which a malicious node impersonates another node on the net-
work to launch attacks or infiltrate the network operations. A node
represents an ECU connected to the CAN bus that can transmit
and receive message frames. We assume that the adversary is able
to access the bus to perform receive and transmit operations. Ac-
cess is achieved by penetrating the CAN bus through remotely
accessible nodes on the bus. Typically, these nodes transmit on a
low-speed CAN bus, but the adversary is using this medium as
a foothold to gain access to the high-speed CAN bus in order to
affect the operation of the safety-critical nodes that control driving
functionality.

We examine the typical effect of multistep attack scenarios where
the adversary’s goal is to control the safety-critical nodes on the
high-speed CAN bus. The adversary starts by intercepting mes-
sages from healthy nodes transmitting on the low-speed bus. An
interception operation involves a malicious node reading message
frames. When access to this bus is established, the adversary sends
masqueraded messages targeting safety-critical nodes on the high-
speed bus. Since any node can broadcast messages on the CAN bus
and each receiving node now determines if the message is meant
for them or not, the adversary can successfully spoof messages
targeting a specific node controlling the critical operations of the
vehicle without authentication. When these target nodes accept
any of the spoofed messages, the adversary has succeeded in the
attack.

We assume that:
• All CAN controllers are trustworthy, i.e., the hardware con-
troller behaves correctly with respect to the CAN protocol.

1 11 6 0-64 15 1 7 3

SOF ID CTRL	
Field

Data	
Field

CRC	
Field

ACK
Slot EOF IFS Bus

Idle
Bus
Idle

CRC	
Deli
miter

R
T
R

ACK	
Deli
miter
111

Data	FrameRecessive

Dominant

Figure 1: The Standard CAN data frame format

• A network may consist of several separate buses connected
through the gateway, and the safety-critical ECUs are con-
nected through the CAN bus.
• ECUs attached to both the CAN bus and a remotely accessible
interface are configured to reboot when put in bus-off state.

3 CONTROLLER AREA NETWORK (CAN)
BACKGROUND

The controller area network is a standard serial communication bus
developed for use in automotive applications that interconnects
ECUs through a broadcast bus. It implements carrier sense mul-
tiple access with collision detection and arbitration on message
priority (CSMA/CD+AMP) and it is the most commonly used com-
munication protocol in the modern automobile. CAN efficiently
implements static fixed priority non-preemptive scheduling of mes-
sage frames through bus arbitration. Message frames sent on the
bus are broadcast to all nodes, i.e., ECUs, on the network. Every
message broadcast contains a unique ID which represents its prior-
ity and meaning. Messages with lower ID in the bus have higher
priority and get to transmit first. The message frames are of four
different types: the data frames for sending data between nodes (de-
picted in Figure 1), remote frames for requesting transmission of a
data frame with the same identifier, error frames used in signifying
detected errors, and overload frames used to provide for an extra
delay between frames.

CAN bus transmits signals of 0 or 1, where the term dominant
bit represents the logical 0 and recessive bit denotes the logical 1
signal. When the voltage difference between the two wires (CAN
high and low) is large, the state is dominant. The state is recessive
when the voltage difference is small between the two wires. When a
node transmits a dominant bit and another transmits a recessive bit,
this will result in the transmission of the dominant bit. Automatic
arbitration is built into the CAN protocol as all nodes must monitor
the state of the bus during transmission and halt transmission if a
dominant bit is observed when transmitting a recessive bit.

Typically, CAN buses are either high speed or low speed. High
speed CAN bus communicates at a fixed rate of up to 1 Mbps. A
high speed bus is terminated with 120-ohm resistors on each end
to avoid transmission reflection within the bus, and it is used as
a high throughput bus. Low speed CAN bus operates at a fixed
rate of 125 Kbps and every node has its own termination. The low-
speed bus is often referred to as fault-tolerant CAN bus as it allows
communication to continue in case of a wiring failure on the CAN
bus lines.

3.1 CAN Error Handling
CAN protocol implements error handling feature for nodes trans-
mitting on the bus in order to monitor the health of the bus. This
error handling feature is essential for fault-tolerance, which is vital

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

64

for maintaining the functionality of system components despite fail-
ures and errors. In the CAN protocol, this feature allows nodes on
the network to exercise actions like raising error flags, and retrans-
mitting or discarding frames when an error is detected. The CAN
protocol defines the following error types for error handling [3]:

• Bit error: Nodes transmitting frames on the bus also moni-
tor the bus and compare the bit level to be transmitted with
that monitored on the bus. A bit error occurs if these bits
are different except during message arbitration.
• Stuff error: A stuff error occurs when six consecutive equal
bits is observed in the data field which should have been
coded by the method of bit stuffing.
• Cyclic Redundancy Check (CRC) error: A CRC error is
raised when the CRC received for a message frame is differ-
ent from the one calculated by the receiver for the frame.
• Form error: A form error occurs when a fixed-form bit field
of a message frame contains illegal bits.
• Acknowledgment (ACK) error: ACK error is raised when
a transmitting node receives no dominant bit issued by a
receiver in the ACK slot.

When a node detects an error on the bus, it flags the corrupted
message and transmits an error frame. An error frame initiates the
termination of an erroneous data or remote frame. It signals the
detection of an error condition by a receiving or transmitting node.
If a node is in error active state, an active error frame is transmitted
which is six dominant bits signaled on detecting an error on the
network. Otherwise, a passive error frame is transmitted, which is
six recessive bits transmitted by a node detecting an active error
frame on the bus. The transmission of the faulty message will abort
and attempt to retransmit at the next bus idle time.

Each node implements two error counters: transmit error counter
(TEC) and receive error counter (REC). These counters start at zero,
and they increment when an error is observed or decrement when-
ever the controller successfully transmits or receives a message
according to the predefined rules specified by the CAN protocol.
When an error is detected at the sending node, a sending node TEC
is increased by 8, and the other nodes’ RECs are increased by 1.
When an error is detected at a receiving node, the receiver node
REC is increased by 8. For a successfully transmitted message, the
TEC and RECs of both the sending and the receiving nodes are
decreased by 1, respectively.

The values of the TEC and the REC affect the error handling of
the CAN bus as nodes change their error status. The transitions
between the error states is shown in Figure 2. In error active state,
the node is said to be in a healthy state when the TEC ≤ 127 and
REC ≤ 127. A node will transition into the error passive state when
the TEC > 127 or the REC > 127. A node in this state can partake
in the bus communication but can only transmit a passive error flag
when an error is detected. The error flag in this state is changed
to 6 consecutive recessive bits to avoid any impacts on the bus
operation and must wait before initiating further transmission. In
general, a value of an error count that is higher than 96 indicates
an extremely disturbed bus.

The bus-off state is an error state of the CAN controller set by the
transmitting node when the TEC exceeds 255. In this state, the node
is switched off from the bus and can not transmit or acknowledge

Error

Active

Error

Passive

Bus	Off

TEC	<=	127	and	

REC	<=	127

TEC	>	127	or	REC	>	127

TEC	>	255	Reset	

Figure 2: Flowchart of CAN Bus Error Counter

frames compulsorily. This error state is usually a result of critical
hardware or software problems. A node in a bus-off state is not
allowed to influence the bus operation and can only rejoin the
network by transitioning to error active when its error counters
are set to zero after monitoring 128 occurrences of 11 consecutive
recessive bits on the bus.

3.2 Security Challenges of CAN
CAN architecture was designed to be a closed system of nodes
that communicate within the vehicle. Therefore, the CAN bus is
implemented with no authentication protocol to allow free flow of
messages to all the nodes and these messages are sent in the clear.
When a node receives a message, it decides whether the message is
for it. The broadcast nature of CAN allows each node connected to
the bus to broadcast and receive messages sent with no verification
of the source and the destination. An attacker with bus access can
eavesdrop on the messages since they are unencrypted. Also, the
bus is unsegmented allowing a mix of safety-critical and non-safety-
critical nodes to communicate on the same bus. This is a significant
concern as it allows for an unauthorized node to transmit spoofed
messages which can be used to compromise the safety-critical nodes.
Furthermore, the CAN bus is vulnerable to a denial of service attack,
which can be realized by leveraging the arbitration process of the
bus and transmitting highest priority messages continuously to
paralyze the operation of the bus. These vulnerabilities of the CAN
bus can be exploited to perform several attacks which include data
injection, spoofing, and replay attacks. Also, a malicious node can
be placed on the bus to transmit anomalous messages that could
compromise the entire operation of the bus.

4 INTRUSION PREVENTION SYSTEM DESIGN
Performance, reliability, and safety are crucial features of safety-
critical applications such as automotive networks [11]. A significant
challenge for designers is to balance the requirements of safety,
security, and functionality. The priority of safety is the passenger’s
well-being, and to ensure safety, even in the worst of conditions, cer-
tain features of the vehicle must remain operational such as airbags
and collision avoidance systems. This implies that the safety of
critical features and operation have priority over security. However,
what follows in situations where one of these safety features is

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

65

Message
Frame

Compromised
Node

Normal
Node

Start	REC
Counter	

The	Detector

Transmit
Error	Frame

TEC	Counter
>	255	

Start	TEC
Counter	

Bus-Off
State

Reboot-Based
Recovery

Trusted	ECU
Node

Figure 3: Process steps of the proposed recovery approach

compromised or is the target of an attack? To ensure the security
of the vehicle in such situations, some features and operations may
need to be limited or brought down into a degraded state while the
vehicular systems maintain operational safety.

We present a reboot-based intrusion prevention approach for
security covering arbitrary faults of network nodes that are under
attack and also considering the effect of attack propagation in the
CAN bus. Presently, our focus is on message spoofing attacks that
impersonate or masquerade as a functional ECU on the bus. The
reboot-based recovery is a practical recovery method for ECUs
that have been compromised by a remote adversary. The goal of
this approach is to prevent adversaries from propagating attack
messages further into the network and control the safety-critical
CAN bus operations. The high-level overview of the proposed
recovery method is illustrated in Figure 3. The figure shows the
proposed architectural model of the recovery approach. When a
message is released on the bus, it is broadcast to all the nodes
on the network, including the detector node. The detector node,
which represents the IDS placed strategically to monitor messages
broadcasted on the bus, performs checks and transmits an error
frame if the sent message is anomalous. The compromised node
increments its TEC while the healthy node also increments its REC.
Eventually, incrementing the error counter leads to the process of
reboot recovery as illustrated in the figure.

4.1 ECU Architecture and General System
Model

The architecture of a typical ECU node contains a hardware CAN
controller and transceiver that interfaces the ECU software to the
CAN bus—the controller manages digital bits in frames, and the
transceiver implements the physical bus access including bus ar-
bitration. We add IPS logic in parallel to the CAN controller that
processes commands and may generate CAN messages as depicted
in Figure 4. This logic monitors the message frame at the controller

CAN	Controller

CAN	Transceiver

CANH

CANL

CAN	Node

IDS

Intrusion	
Prevention	System

Figure 4: ECU Architecture

level and contains a hardware implementation of an IDS and our
proposed recovery approach, which together comprise a CAN bus
IPS.

The primary functionality of the IPS logic is to monitor data
transfers of the bus to protect against unauthorized access. The
IPS has two operating modes: monitor and react. In the monitor-
ing mode, the IDS component observes the bus operations while
receiving message frames without meddling on the bus activities.
When the IDS detects an attack, the IPS enters a reactive mode and
sends an error frame to defend the system.

4.2 Detectors
Our proposed IPS can use any kind of IDS satisfying the requirement
that it can detect an attack message before that message finishes
transmission on the bus. We encapsulate such an IDS in a detector
node, which is responsible for triggering the IPS mechanism. In
this work, we investigate two IDS algorithms for implementation
as a detector: message interval [18] and message response time
analysis [16]. In the following we briefly describe each of these.

4.2.1 Message Interval IDS. Song et al. [18] describe an IDS using
the interval between messages as a feature. By examining the time
interval between messages of the same ID, they evaluate how mes-
sage injection attacks affect the individual time interval of each
message ID. The authors determine that the time interval is a fea-
ture capable of detecting message injection attacks in CAN bus
traffic by computing the time difference in the arrival of every new
message of the same ID transmitted on the bus, and label a mes-
sage as injected if the time interval is shorter than the predefined
normal.

The detector node operation for the message interval IDS is
described in Figure 5a. The controller maintains a lookup table
of the message IDs, their intervals, and the transmission time of
the previous instance of the message. We assume the lookup table
contains the list of messages transmitting on the bus as the detector.
When a new message frame is transmitted, the IDS checks the CAN
ID and computes the time interval from the arrival time of the
previous message with the same ID. If the time interval of the new
message frame is as expected, the previous transmission time of
the ID is updated in the lookup table. Else, if the calculated interval

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

66

Begin

Initialize Lookup Table
(Message_ID, Prev_time,
Interval, Error_count)

Wait for
Message

Message_ID
match a Table

entry?

New_time ­
Prev_time <
Interval?

Update Lookup
Table with
new_time

(prev_time =
new_time)

Transmit
 Error Frame

No

Yes

No

Yes

(a) Message Interval IDS.

Begin

Initialize Lookup Table
(Message_ID, Release Times
e1 and e2, Period, Error_count)

Wait for
Message

Message_ID
match a Table

entry?
erel < e1?

Update Lookup
Table with new

e1 and e2
(e1 = e1 + Period
e2 = e2 + Period)

Transmit
 Error Frame

No

Yes

No

Yes

(b) Message Response Time IDS.

Figure 5: Flowcharts of the detector nodes for each IDS.

is shorter, i.e., the message frame arrives sooner than expected, the
IDS indicates the message is anomalous and transmits the error
frame. By updating the previous transmission time, the controller
can compute the difference between the received and previous
frame transmission time with the stored interval.

4.2.2 Message Response Time Analysis IDS. Olufowobi et al. [16]
introduced an IDS based on estimating the real-time model param-
eters of a set of CAN messages and using response time analysis
to derive best- and worst-case response times for each message.
These response times are then used to predict the arrival window of
periodic messages, and the IDS triggers an attack signal if messages
arrive too soon. An attack is detected when a message with an
unknown ID is transmitted, the release time falls outside of the
acceptable range, or more than one message is received at a period
or in an interval.

Figure 5b shows the system flow diagram of the detector node
operation for the message response time analysis IDS. The con-
troller maintains a lookup table of message IDs, their earliest and

Error_count
> 0?

Node State =
Bus­Off

Node State =
Error Active

Update Error Count
Error_count =
Error_count + 8

Error_count
> 255?

Error_count
> 127?

Node State =
Error Passive

No

Yes Yes

Yes

No

No

Receive
Error Frame

Figure 6: Flowchart of the behavior of the victim and mali-
cious ECUs

latest release times of the next frame, and their period or inter-
arrival time. We assume that the lookup table contains the list of
all messages that transmit on the same bus as the detector node.
By our attack model, these are non-safety-critical nodes (message
IDs) that can be accessed remotely by an adversary to gain access
to the safety-critical nodes. The inputs to the monitoring node
are the lookup table and the received frame observed through the
controller. When a valid frame is received and is transmitted suc-
cessfully, the next expected release time of the ID is updated in
the lookup table. Otherwise, the error frame is transmitted if the
message violates its periodicity or sporadicity. By incrementing the
counter, the controller can compare the next received message with
the sequence of the message in the updated table. The sequence
helps in validating the authenticity of the message as the counter
should be consistent with the received message.

4.3 Attack Mitigation and Recovery
When the IDS detects an attack, the IPS immediately enqueues an
error frame for transmission. This frame starts with six consecutive
dominant bits, which will have the highest priority during the next
bus arbitration. The nodes in receipt of the error frame will discard
the message they received.

Each time a message is flagged as an attack, the IPS will transmit
the error frame causing the sending node to increase its TEC by 8,
and every other node on the bus will increase its REC by 1. If the
attack continues until the TEC of the compromised node is higher
than 255, it enters the bus-off state. This method is similar to the
attack proposed by Cho and Shin [6] to drive a node to bus-off.
Figure 6 shows the process of steps the compromised node goes
through before entering the bus-off state.

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

67

ECUs in the bus-off must observe 128 times 11 consecutive re-
cessive bits on the bus before they can transition back into the
error active state. Prior to this transition, an ECU may also reset
or reboot itself. We suggest that all ECUs with remote interface
capability undergo a reboot process when they reach bus-off. A
reboot process represents a recovery procedure that provides a
way to restore the initial system state. The reboot process does not
depend on the correct functioning of the rebooted system, is easy
to implement and automate, and returns the software to its initial
state, which is often its best understood and best-tested state [4].
Power-cycling is fast with minimal impact on the time it takes for
the system to recover, and can provide high availability of these
ECUs even when a detection algorithm is prone to false alarms or
when it is unknown if the reboot process can correct the failure.
Also, it should be noted that these ECUs are not the safety-critical
ones, so the impact of rebooting them will not affect system safety,
but perhaps will negatively affect user experience.

The reboot process plays a pivotal role in keeping the node in
a bus-off state alive along with the reboot policy that performs
the actual restart. The reboot policy specifies how the node in
the bus-off state will be restarted, and it will be initiated in the
application layer of the CAN controller. There are different kinds
of reset policies to decide when and how the application layer
should reset the CAN controller. These policies include automatic
reset policy, wait-then-reset policy, and frequency-limited-reset
policy [10].

In automatic reset, the reset is initiated immediately after the
CAN controller enters the bus-off state while the wait-then-reset
requires the application layer to observe a predefined wait period
to recover from the fault condition before starting the reset. In
the frequency-limited-reset, the time between any two subsequent
resets must be greater than a predetermined time interval. When
the CAN controller is in a bus-off state, the reset vector of the
application layer is triggered to initialize the reset, and the CAN
controller observes the predetermined number of recessive bits
before rejoining the network.

4.4 Discussion and Limitations
In a transient attack scenario where the adversary established a
network connection and compromised the ECU in the RAM (i.e.,
malware is RAM-resident), resetting the ECU will neutralize the
attack process. However, perhaps the exploit still exists, so the
attacker can relaunch the same attack. For a persistent attacker,
this process increases the burden on the attacker as there will be a
need to reestablish the attack by re-infecting the ECU every time a
reboot occurs. Resetting the compromised node represents a good
step in a remediation process even if not foolproof.

If the attacker can modify the ROM or flash the ECU, then a reset
will not evict the attacker necessarily but it will disrupt the attack
process. This persistent attack requires a sophisticated process to
accomplish. If the attacker is persistent and the ECU needs to reset
itself several times, a crude way to handle the repeated faults would
be to have an indicator light such as the check engine light to notify
the driver of a potential vehicular malfunction.

Currently, it is not typical for ECUs connected to the CAN bus
with remotely accessible interfaces to have reboot capability when

in a bus-off state. The reboot process is implementation-dependent.
Some ECUs may reboot after a driver-initiated power cycle or a
visit to a service station. Our proposed approach may require the
use of controllers that have this particular feature built-in, and
it is in the manufacturer’s purview to decide whether or not to
include this feature. Also, our assumption about trustworthy CAN
controller can be violated, e.g., in case an attacker can reprogram
the (software/firmware) controller.

5 IPS IMPLEMENTATION
To demonstrate the effectiveness of our approach, we developed
a proof of concept implementation using the Xilinx LogiCORE IP
CAN v5.0 as a reference [20]. This core conforms to the ISO 11898-1,
CAN 2.0A, and CAN 2.0B standards. It is particularly suited for
automotive applications and has user-configurable options that
provide flexibility for multiple ECU applications. It also supports
message prioritization via its high priority buffer (TX HPB) and
readable error counters. As such, it allows for seamless integration
of our detector functionalities. Our implementation targeted the
Zynq-7000 SoC.

The CAN nodes in our network are connected to the CAN bus
via the physical interface (CAN PHY). Each Xilinx CAN node can
operate in stand-alone mode or connected to a Control block or
processor using its AXI4-Lite Interface located inside the CAN
Controller. The Controller has an Object Layer for message storage,
filtering, and status updating. It also has a transfer layer where the
CAN protocol engine resides.

The CAN protocol engine consists primarily of the bit timing
logic (BTL), the bit stream processor (BSP) and the clock prescalar
modules. The BTL synchronizes the operation of the CAN bus and
the BSP. At the appropriate clock tick, the BTL captures a received
bit or places a transmitted data bit on the CAN bus. It also produces
a sampling clock signal for the BSP. The BSP analyzes bus traffic
during transmission and reception, updates the error counters and
the error state when necessary, and manages operations dealing
with CAN message transmission and reception. It captures message
frames from the high priority buffer (TX HPB) or from the trans-
mission queue. It also inserts the error flags (bit, stuff, form, CRC
and ACK errors). The frame’s bits are serialized and constructed
into fields per the CAN core messaging protocols at this stage. The
reverse operation is also completed by the BSP when data is re-
ceived. Message frames are deconstructed and stored in the receive
queue (RX FIFO) where the identifier of the received message (IDR)
can be accessed by the detector node. The IDR register is four bytes
long, and its 11 most significant bits store the message ID from the
message frame. The arrival time stamp (T_arrival) is generated by
a system clock counter which is started after the system’s initial
reset. For each message, T_arrival is also recorded and submitted
to the IPS inside the detector node along with the clock signal (clk),
which is derived from the main CAN engine protocol clock. In our
approach, the IPS module sits at the base of the BSP in the CAN
protocol engine as shown in Figure 7.

The implementation features three modules: Message ID Check,
Check Message Feature and Update State. After the initial system
reset, the Message ID Check module is activated once a message is
received and ready to be read from the RX FIFO. The sender node

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

68

Bit	Stream	Processor Bit	Timing	Logic Physical	Layer
Interface

Message
ID	Check

Check	Message
Feature

Update	State

Tx

Rx

Rx	bits
Tx	bitsTx	Msg

Rx	Msg
Control/

Status	data	

Error_frame
Msg

Release
Signal

T_arrival

Control
Sampling

clk

Clk

Clk	divider

CAN	bus

IPS	Module

Msg
ID

Figure 7: CAN controller with IPS module

identification Msg ID is extracted and compared against entries of
a look-up table containing all known nodes in the network. If a
match is not found in the table, the error_frame signal is activated
to indicate that the node from which the message is received is
unknown so invalidate the message. Upon a successful match, the
detector examines the received message inside the Check Message
Feature, which is where we implement the IDSs used for evaluation.

When Check Message Feature detects an anomaly, the message
is invalidated by signaling the error frame and the error count
update is triggered at the BSP level. In the case T_arrival’s range is
valid, the Update State module becomes active. It updates the stored
state depending on the IDS in use, for example programming the
next expected arrival time of a message or incrementing message
counters.

6 EXPERIMENTAL VALIDATION
Here, we describe the evaluation criteria for our IPS to illustrate
its effectiveness and performance. First, we focus on the latency
required for the detector node to issue a decision after a message
frame has been received at the controller level. We compare the
implementation results of two different IDSs, the interval-based
and response time analysis-based approaches. We also offer an
analysis of the minimum operating speed suitable for various CAN
bus speeds, using different data lengths for a standard message
frame. The experimental network is composed of 6 nodes and a
detector node communicating on the bus. Each node is capable of
transmitting a message to one or more nodes in the network by
broadcasting it through the bus. Each node may also send one or
multiple messages of the same type. However only one message
can be sent at a particular instance. In the case of time response IDS,
the periodicity of each message as well as the expected arrival time
range of the first message originating from each node is known to
the supervisory node. Similarly, the minimum interval threshold
for each message is saved for the detector node during setup.

6.1 Area
Table 1 shows that the IPS only requires 0.03% and 0.14% of slice
registers and LUTs, respectively. The total number of occupied slices
is 6 out of the 4400 available on the platform and only 18 LUT-flip

Table 1: Synthesis area results

IPS Interval IDS Response Time IDS

% of % of % of Total
Resources Available Resources Available Resources Available Available

Used Resources Used Resources Used Resources Resources
Slice Registers 10 0.03% 70 0.20% 88 0.25% 35200
Slice LUTs 18 0.14% 79 0.63% 88 0.70% 12600
Occupied Slices 6 0.14% 23 0.52% 40 0.91% 4400
LUT-Flip Flops 18 - 84 - 114 - -

flop pairs are utilized. The table also shows the area requirements
of the message interval and message response time IDSs. When
compared against each other, the difference in resource usage is
noticeable. The message response time IDS required 18% more slice
registers, 8.5% more slice LUTs, approximately 37% more occupied
slices, and an additional 22.7% LUT-flip flop pairs. However, when
the available resources are taken into consideration, both designs
require very little hardware for implementation. For the message
response time analysis IDS, 0.3% of available slice registers, 0.6%
of slice LUTs and 1.04% occupied sliced were used. In the case of
the message interval IDS, the usage was 0.23%, 0.55% and 0.66%
respectively.

We also compared the resources used in both types of IDS to
the original CAN controller design. As described in [20], the num-
ber of slice LUTs and registers necessary to implement the CAN
controller core increases as the depth of receiver or transmitter
FIFOs increases. Valid values for RX/TX FIFO depth range from
2 to 64. Thus, integrating an IPS module in the CAN core would
have a higher impact on controllers with an RX/TX FIFO depth of
2. Table 2 shows the usage of the unmodified CAN controller (with
a FIFO depth of 2) depending on the number of acceptance filters
available. It also shows the overhead generated by integrating each
IDS. As can be seen, for a CAN controller with no acceptance filter,
the response time detection approach yields a 14.83% and 18.74%
increase in slice LUTs and registers utilization respectively. On the
other hand, for the same size controller, the interval based detection
approach generated a 13.57% and 15.30% overhead respectively.

6.2 Detection Latency
This evaluation considers only the computation time for a single
message at the detector level. The clock signal of the detector block
is derived from the CAN controller clock.

For each message received, the detector node performs various
checks which include message instance ID checks and a check based
on the arrival time. When the message instance passes both checks,
the detector node updates the arrival time of the next instance of

Table 2: Overhead of detector

Slice LUTs Utilization Slice Registers Utilization

Original Response Interval Original Response Interval
Acceptance CAN Time IDS IDS CAN Time IDS IDS

Filters Controller Overhead Overhead Controller Overhead Overhead
0 715 14.83% 13.57% 523 18.74% 15.30%
1 788 13.45% 12.31% 617 15.88% 12.97%
2 794 13.35% 12.22% 620 15.81% 12.90%
3 802 13.22% 12.09% 623 15.73% 12.84%
4 808 13.12% 12.00% 626 15.65% 12.78%

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

69

Msg ID Check

Msg ID Lookup
Table

Period/Interarrival
Lookup Table

e1/e2 Lookup
Table

Time Range
Check

New e1/e2
Update

T_arrival

Msg Release
 Signal

Msg ID

Period/Interarrival

New e1
New e2

Range Check
Ok

ID Match Ok

Line Index

e2

e2

Figure 8: Process check of the detector node using the mes-
sage response time analysis IDS

the message. This process is depicted in Figure 8 in detail for the
message response time analysis IDS. If the message fails one of the
checks, the detector node transmits an error frame and increases
its REC by one while the TEC of the transmitting node is increased
by 8.

Regardless of the IDS in use, if a message frame is received
with an ID that is not in the detector’s lookup table, it takes the
detector five clock cycles to check for validity. The detector node
queues the error frame for transmission, which will occupy the bus
immediately after the injected message completes, thus invalidating
the message frame of that unknown ID.

For each IDS, the time needed for checking the message feature
for an anomaly and updating the state may differ. The following
characterizes these costs for each IDS we consider.
• Message Interval IDS. This IDS can run at 417MHz maxi-
mum frequency or 2.4ns cycle time and uses five clock cycles
to check the difference between the previous message trans-
mission time and the transmission time of the new message
frame compared with the saved interval. The lookup table
is updated with the record of the new transmission time
denoting the previous time for the next arriving message.
Therefore, it takes approximately 12ns to complete the entire
check.
• Message Response Time Analysis IDS. This IDS can run
at 400MHz maximum frequency or 2.5ns cycle time and also
uses five clock cycles to check whether the interarrival time
of the message fits in the expected arrival time range of the
next message for the matching ID. The interarrival time of
the next message in the lookup table is updated with the
record of the next arrival time. Therefore, the detection time
is 12.5ns .

Thus, both of the considered IDSs require at most 12.5ns to complete
detection.

The static timing analysis of the post-route implementation
shows that the detector node can operate with a minimum clock pe-
riod of 2.33ns . However, we have only been able to achieve a clock
period of 2.5ns . In other words, the maximum operating clock fre-
quency achieved without violating any time constraints is 400MHz,
which is about 16 to 50 times faster than the IP CAN controller
clock of 8 to 24MHz. In addition, per [20], the characterization

Data Length (Bytes)

M
in

im
um

 D
et

ec
to

r F
re

qu
en

cy
 (K

H
z)

0

50

100

150

200

250

0 1 2 3 4 5 6 7 8

1Mbps 500Kbps 250Kbps 125Kbps

Figure 9: Detector Behavior for Different Bus Speeds

results of the IP Core runs between 160MHz to 220MHz for a Zynq
board running at a speed of −3. Thus, our detector block can run
fast enough to generate the necessary signals for the node.

To understand the time to transmit a bit of the message frame
when the message ID bits are received and decide on its validity,
we assume a bus speed of 1Mbps . This bus is the fastest and gives
the quickest time the detector has to be. The transmission time
for a single bit, τbit , in this bus is 1/1000000 = 1 × 10−6seconds .
In a frame with 0-bytes of data, a maximum time of 25 × τbit is
available to decide on the message frame after the entire arbitration
field is received. Therefore, depending on the number of data bytes
transmitted, the shortest time available to decide on the message
from the end of the ID to the end of the message frame is about
25000ns , excluding the end-of-frame bits. This minimum occurs
when 0-bytes of data are included in the message frame, and for
each additional data byte, the decision window increases by 8-bit
transmission time — effectively decreasing the required operating
frequency imposed on the detector node.

Figure 9 shows the minimum frequency of the detector at differ-
ent bus speeds while varying the number of data bits (0 to 8 bytes)
being transmitted. Theminimumoperating frequency is desirable to
reduce power costs, while the minimum data length, overall (valid)
messages of the bus have to be considered. Thus, if any message
uses 0-bytes data length, then the 0-bytes analysis must be used in
determining the minimum operating frequency. As can be seen in
the chart, for different bus speeds, the required minimum operating
frequency decreased gradually to approximately a third when the
number of data bytes increased from 0 to 8 bytes. Although the
required operating frequency varies according to the bus speed, the
detector must issue a decision within 25-bit transmission time. In
the worst case on a 1Mbps data bus, when the frame contains no
data byte, the detector must operate at a minimum of 200KHz or
5000ns cycle time. As described above, with the implemented IDS,
the detector is able to operate as fast as 400MHz and complete the
message validation in 12.5ns . At this speed, it will have completed
its operation and decided on the still-queued data frame (bit 19 to
83) before the completion of the 13th bit which takes 1000ns . In an
attack scenario where the message ID is not in the lookup table or
the timing is not as expected, the detector node will have decided
on the message, and an error frame will have been queued well

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

70

before the end of the transmission of the spoofed message. In the
best case scenario on a 1Mbps bus and the the messages transmitted
have 8-bytes of data length, the detector can operate at a minimum
frequency of 56KHz. With this, it takes 17800ns × 5 clock cycles
= 89000ns to validate the message frame. This is still enough time
to issue the error frame right before the last bit in the end-of-frame
and before the message completes.

Additionally, in many vehicles, the non-safety-critical ECUs are
attached to the medium and lower speed buses in which the trans-
mission time is even longer. This also implies that a detector node
operating in the worst case frequency of 56KHz has much more
time to complete its operations and send an invalidation message.
By this, our approach tomitigating anomalous behavior in the vehic-
ular network is practical, and the proposed algorithm is lightweight
and computationally efficient.

6.3 Time to Error Passive and Bus-Off States
We calculate the time for the compromised node to transition to
error passive and bus-off state. As noted by Davis et al. [8], using
1Mbps bus speed, the transmission time, Cm for a single bit is
τbit =

1
busspeed =

1
1,000,000 , and the error frame has a maximum

of 23 bits. Assuming the message is of the highest priority and the
error frame experiences no interference during its transmission
when the anomalous message is detected, the total time consumed
is calculated by:

TEP = 16(Cm + 23 × τbit) (1)

where 16 represents the total number of anomalous messages re-
quired to transition into another state, and Cm is the maximum
transmission time of a CAN message including the stuff bits and
the inter-frame space. Cm of a message with an 11-bit identifier
containing sm data bytes including the stuff bits and inter-frame
space is given by:

Cm = (55 + 10sm)τbit . (2)
Similarly, if the anomalous message is not of the highest priority

transmitting in the bus, we incorporate the notion of message
interference which is due to higher priority messages that may win
arbitration and get transmitted before the message. The recurrence
relation (equation 3) gives the interference where k are messages
with higher priority than message i , and Tk is their respective
periods. The starting value forw0

i = 0 and terminates whenwn+1
i =

wn
i .

wn+1
i =

∑
k<i



wn
i + τbit

Tk


Ck (3)

Therefore, from these calculations, it takes 2.53ms for a message
with the highest priority to transition into the error passive state,
and approximately the same time to transition into the bus-off state.
The need to transition the compromised node into a bus-off state
as fast as possible is to prevent the attack from propagating into
the entire network. This propagation can affect the safety-critical
nodes which can affect the operation of the entire system. Also,
we want to assure a seamless transition of the anomalous node to
bus-off without impeding the performance of the vehicle before the
system is compromised further. Figure 10 shows the time it takes

Data Length (Bytes)

Ti
m

e
To

 E
rr

or
 P

as
si

ve
 (m

s)

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8

1Mbps 500Kbps 250Kbps 125Kbps

Figure 10: Time to error passive for different bus speeds

for a message with the highest priority and different data bytes to
transition into error passive state for different bus speeds.

6.4 Case Study
In this section, we confirm the calculation of Equation 1 on the high
speed CAN bus of a vehicle with 500 kbps bus speed by measuring
how long it takes for a node to transition into an error passive and
bus-off states. Figure 11 and 12 show the logs from our sniffer. The
anomalous message (ID 0x82) is the 6th highest priority message
transmitting on the bus. As shown in Figure 11, it takes approxi-
mately 2.672ms for this node to transition into the error passive
state. This number represents the difference between the time the
node enters the error passive state (highlighted in brown) and the
time the first error flag was transmitted (highlighted in yellow)
for message ID 0x82 (highlighted in red). Similarly, as shown in
Figure 12, it takes approximately 3.732ms for the same message ID
to transition into the bus-off state (highlighted in magenta). After
observing the required number of recessive bits, the TEC and REC
for this ID go through reset (highlighted in orange) and the next
successful transmission (highlighted in green) shows the transition
of this node from bus-off to error active state.

7 RELATEDWORK
The related work falls in two categories. First, there is a lot of prior
work in automotive IDS, from which we have chosen just two IDSs
to consider in our approach. Other automotive IDSs can also be used
to realize the detector node if they satisfy the basic requirements
of signalling a detected attack prior to the completion of message
transmission (i.e., before the inter-frame space), so that the error
frame can be transmitted in time to thwart the attack message.
Second, the most closely related work uses a similar mechanism to
try to push an attacking ECU into a bus-off state, which we review
in the following.

Kurachi et al. [13] proposed a centralized authentication system
for preventing malicious message transmission in CAN using the
error frame. The authors used a single centralized ECU to verify
the MAC of all CAN messages and send out an error frame if the
MAC attached is invalid. Their method requires a modification to all
ECUs to be able to share keys and generate MACs when messages
are transmitted. This approach will be very costly to implement and

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

71

Time(Sec) ID TEC/REC	Error	Count Data
3.831466 82 7F	8	13	F8	A8	80	40	0
3.831660 446 0	0	0	0	0	0	0	0
3.831707 85 7D	0	80	0	F8	A0	7D	3
3.831822 82 CAN	Rx/Tx	REGS	-	TEC:	8	-	REC:	0 0	0	8					
3.831902 82 CAN	Rx/Tx	REGS	-	TEC:	16	-	REC:	0 0	0	10					
3.831949 42C 8C	0	0	0	31	50	0	0
3.832089 82 CAN	Rx/Tx	REGS	-	TEC:	24	-	REC:	0 0	0	18					
3.832170 82 CAN	Rx/Tx	REGS	-	TEC:	32	-	REC:	0 0	0	20					
3.832287 82 CAN	Rx/Tx	REGS	-	TEC:	40	-	REC:	0 0	0	28					
3.832377 83 0	E0	80	0	0	0	0	0
3.832448 82 CAN	Rx/Tx	REGS	-	TEC:	48	-	REC:	0 0	0	30					
3.832566 82 CAN	Rx/Tx	REGS	-	TEC:	56	-	REC:	0 0	0	38					
3.832663 2A1 FF	FF	FF	FF	0	0	0	0
3.832726 82 CAN	Rx/Tx	REGS	-	TEC:	64	-	REC:	0 0	0	40					
3.832807 82 CAN	Rx/Tx	REGS	-	TEC:	72	-	REC:	0 0	0	48					
3.832897 82 CAN	Rx/Tx	REGS	-	TEC:	80	-	REC:	0 0	0	50					
3.832919 76 3E	7D	C0	80	0	0	0	0
3.833111 82 CAN	Rx/Tx	REGS	-	TEC:	88	-	REC:	0 0	0	58					
3.833165 82 Tx	Error	Warning	-	TEC:	96	-	REC:	0 5	0	60					
3.833194 77 0	0	8	0	7F	F7	F9	FF
3.833352 82 Tx	Error	Warning	-	TEC:	104	-	REC:	0 5	0	68					
3.833411 7D 0	0	FE	10	0	3F	EF	FE
3.833512 82 Tx	Error	Warning	-	TEC:	112	-	REC:	0 5	0	70					
3.834098 82 Tx	Error	Warning	-	TEC:	120	-	REC:	0 5	0	78					
3.834259 213 FF	FF	8	4	80	11	FF	41
3.834494 82 Tx	Error	Passive	-	TEC:	128	-	REC:	0 10	0	80					
3.834729 214 80	0	0	0	0	0	7E	10

TEP = 0.002672 s

Figure 11: Log showing node 0x82 (in red) transition into er-
ror passive state. The yellow and brown lines indicate the
transmission of the first error flag and the transition into
error passive state respectively. TEP represents the time to
error passive

deploy for modern vehicles that may contain over 100 ECUs. Also,
adoption of this scheme is unlikely since these ECUs are sourced
from different original equipment manufacturers. Since ECUs need
software modification to execute the node authentication and key
exchange, the ECUs might not have enough computational power
or memory to execute such an algorithm.

Matsumoto et al. [14] proposed an approach for preventing unau-
thorized message transmission in CAN bus using the error frame. In
their approach, each ECU detects unauthorized data transmission
using its message ID by monitoring the data on the bus. The ECU
transmits an error frame to override the message if it detects that
the message is unauthorized before it finishes transmission.

Dagan and Wool [7] proposed the Parrot system to mitigate
spoofing attacks in CAN bus. In their approach, the Parrot defense
launches a counter-attack of carefully crafted collisions to damage
the spoof message and drive the compromised ECU into a bus-off
state. This solution can be implemented as a software patch to each
ECU.

Abbott-McCune and Shay [1] proposed an intrusion prevention
system that monitors the CAN bus to detect invalid messages by
matching the message start-of-frame field with the one prepro-
grammed in the ECUs connected to the CAN bus. When a match
is detected while the connected ECU is not transmitting, the ECU
identifies a replay attack and sends an alert to the detector to signal
a replay attack. In this approach, each segment of the network re-
quires a device that can be implemented in the gateway to monitor
the network activities and compare the message IDs transmitted

Time(Sec) ID TEC/REC	Error	Count Data
3.834869 447 20	0	0	4B	0	0	0	0
3.835027 82 Tx	Error	Passive	-	TEC:	136	-	REC:	0 10	0	88					
3.835110 82 Tx	Error	Passive	-	TEC:	144	-	REC:	0 10	0	90					
3.835225 92 6F	A0	6F	92	0F	A0	E6	14
3.835354 82 Tx	Error	Passive	-	TEC:	152	-	REC:	0 10	0	98					
3.835497 216 0	0	0	2	82	0	0	0
3.835625 82 Tx	Error	Passive	-	TEC:	160	-	REC:	0 10	0	A0					
3.835770 217 0	0	0	0	0	0	0	0
3.835860 82 Tx	Error	Passive	-	TEC:	168	-	REC:	0 10	0	A8					
3.836001 415 0	0	D8	F6	0F	FF	0F	FF
3.836193 82 Tx	Error	Passive	-	TEC:	176	-	REC:	0 10	0	B0					
3.836314 4B0 BB	0	0	0	10	0	0	FE
3.836490 82 Tx	Error	Passive	-	TEC:	184	-	REC:	0 10	0	B8					
3.836619 82 Tx	Error	Passive	-	TEC:	192	-	REC:	0 10	0	C0					
3.836742 78 5	9	80	0	0	0	0	0
3.836980 82 Tx	Error	Passive	-	TEC:	200	-	REC:	0 10	0	C8					
3.837124 82 Tx	Error	Passive	-	TEC:	208	-	REC:	0 10	0	D0					
3.837380 82 Tx	Error	Passive	-	TEC:	216	-	REC:	0 10	0	D8					
3.837606 82 Tx	Error	Passive	-	TEC:	224	-	REC:	0 10	0	E0					
3.837833 202 4	F2	52	71	60	0	0	0
3.838093 82 Tx	Error	Passive	-	TEC:	232	-	REC:	0 10	0	E8					
3.838220 204 E8	0	7D	0	0	F2	0	0
3.838387 82 Tx	Error	Passive	-	TEC:	240	-	REC:	0 10	0	F0					
3.838543 82 Tx	Error	Passive	-	TEC:	248	-	REC:	0 10	0	F8					
3.838760 82 Tx	Bus	Off	-	TEC:	0	-	REC:	0 20	0	0					
3.839603 82 Tx	Bus	Off	-	TEC:	0	-	REC:	1 20	1	0					
3.839910 82 Tx	Bus	Off	-	TEC:	0	-	REC:	2 20	2	0					

⋮ ⋮ ⋮ ⋮
3.843522 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	116 23	74	0					
3.843601 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	120 23	78	0					
3.843722 82 Rx	Error	-	Tx	Bus	Off	-	TEC:	0	-	REC:	125 23	7D	0					
3.843805 82 CAN	Rx/Tx	REGS	-	TEC:	0	-	REC:	0 0	0	0					
3.844057 82 Msg	Error 7F	8	14	0	92	80	0	0
3.844300 82 7F	8	14	0	92	80	0	0

TEP = 0.003732 s

Figure 12: Log showing node 0x82 transition into bus-off
state and resetting the error counters. The yellow and ma-
genta lines indicate the transmission of the first error flag
from the error passive state and the transition into bus-off
state, respectively. The orange and green lines indicate the
error counter reset and the first successful message trans-
mission after the reset, respectively. TEP represents the the
time to bus-off.

to the valid ID, then flag non-matching ones as anomalous. The
authors briefly mention the possibility for the detector to emit a
burst of dominant bits in case of a detected attack to cause an error
that will eventually cause the attacker to shut down. However, they
do not provide details or evaluation of this mechanism, which may
cause unintended negative side effects on the CAN bus as it does
not conform to CAN specifications. Souma et al. [19] proposed a
countermeasure to bus-off attacks in the CAN bus using a similar
approach of a burst of dominant bits.

The prior approaches require modification to the software stack
interfacing the CAN controllers with the bus, which implies modi-
fied software and hardware for each ECU in the vehicle. In contrast
to existing centralized IDSs that have misdetection errors, prior
work [1, 7, 14] that rely on the authentic ECUs to detect an attack
have the potential for perfect classification when the authentic ECU
is not compromised. Our approach, while similar in nature, does not
require authentic ECUs to act as part of the defense scheme. Thus,
our method has a lower adoption cost and greater practicality.

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

72

8 CONCLUSION
We presented a novel IPS for CAN bus that can prevent remote
message injection attacks from succeeding and can trigger reboot-
based recovery of a remotely-compromised ECU. We synthesized
previously proposed CAN IDSs and measured their ability to detect
attacks at latencies within bus line speeds, and we analyzed the
effectiveness of using the CAN error handling mechanisms to drive
an active attacker off the bus. Our detector node is capable of
deciding on the message frame being broadcasted between the
transmission of the last bit of the arbitration field and the end of
the message frame. We provided a case study with message ID
0x82 which has an authentic period of 20ms . In this case study, the
recovery mechanism transitions the anomalous node into a bus-off
state within approximately 6ms which is less than the periodicity
of the legitimate message frame. Future work will integrate the IPS
in a real automotive system, determine the impact of false positives
on attack mitigation, and measure the performance degradation of
reboot-based recovery.

ACKNOWLEDGMENTS
This material is based upon work supported by Northrop Grumman
and the NSF under Grant CNS-1646317 and OAC-1839321.

REFERENCES
[1] S. Abbott-McCune and L. A. Shay. 2016. Intrusion prevention system of auto-

motive network CAN bus. In 2016 IEEE International Carnahan Conference on
Security Technology (ICCST). 1–8. https://doi.org/10.1109/CCST.2016.7815711

[2] Angela Barber. 2018. Status of work in process on ISO/SAE 21434 Automotive
Cybersecurity Standard. presentation, ISO SAE International, April 10 (2018).

[3] Robert Bosch et al. 1991. CAN specification version 2.0. Rober Bousch GmbH,
Postfach 300240 (1991), 72.

[4] George Candea, Shinichi Kawamoto, Yuichi Fujiki, Greg Friedman, and Ar-
mando Fox. 2004. Microreboot–A Technique for Cheap Recovery. arXiv preprint
cs/0406005 (2004).

[5] Stephen Checkoway, Damon Mccoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces. In USENIX SECURITY. USENIX.

[6] Kyong-Tak Cho and Kang G Shin. 2016. Error handling of in-vehicle networks
makes them vulnerable. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 1044–1055.
[7] Tsvika Dagan and Avishai Wool. 2016. Parrot, a software-only anti-spoofing

defense system for the CAN bus. ESCAR EUROPE (2016).
[8] Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. 2007. Controller

Area Network (CAN) schedulability analysis: Refuted, revisited and revised.
Real-Time Systems 35, 3 (2007), 239–272.

[9] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. 2008. Security threats to automo-
tive CAN networks–practical examples and selected short-term countermeasures.
In International Conference on Computer Safety, Reliability, and Security. Springer,
235–248.

[10] Shengbing Jiang, Mutasim A Salman, Michael A Sowa, and Katrina M Schultz.
2017. Approach for controller area network bus off handling. (March 21 2017).
US Patent 9,600,372.

[11] John C Knight. 2002. Safety critical systems: challenges and directions. In Proceed-
ings of the 24th international conference on software engineering. ACM, 547–550.

[12] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,
B. Kantor, D. Anderson, H. Shacham, and S. Savage. 2010. Experimental Security
Analysis of a Modern Automobile. In 2010 IEEE Symposium on Security and
Privacy. 447–462. https://doi.org/10.1109/SP.2010.34

[13] Ryo Kurachi, Yutaka Matsubara, Hiroaki Takada, Naoki Adachi, Yukihiro
Miyashita, and Satoshi Horihata. 2014. CaCAN-centralized authentication system
in CAN (controller area network). In 14th Int. Conf. on Embedded Security in Cars
(ESCAR 2014).

[14] Tsutomu Matsumoto, Masato Hata, Masato Tanabe, Katsunari Yoshioka, and
Kazuomi Oishi. 2012. A method of preventing unauthorized data transmission in
controller area network. In 2012 IEEE 75th Vehicular Technology Conference (VTC
Spring). IEEE, 1–5.

[15] C. Miller and C. Valasek. 2015. Remote exploitation of an unaltered passenger
vehicle. Unknown Journal (2015).

[16] Habeeb Olufowobi, Gedare Bloom, Clinton Young, and Joseph Zambreno. 2018.
Work-in-Progress: Real-Time Modeling for Intrusion Detection in Automotive
Controller Area Network. In 2018 IEEE Real-Time Systems Symposium (RTSS).
IEEE, 161–164.

[17] Christoph Schmittner, Zhendong Ma, Carolina Reyes, Oliver Dillinger, and Peter
Puschner. 2016. Using SAE J3061 for automotive security requirement engi-
neering. In International Conference on Computer Safety, Reliability, and Security.
Springer, 157–170.

[18] Hyun Min Song, Ha Rang Kim, and Huy Kang Kim. 2016. Intrusion detection
system based on the analysis of time intervals of CAN messages for in-vehicle
network. In Information Networking (ICOIN), 2016 International Conference on.
IEEE, 63–68.

[19] Daisuke Souma, Akira Mori, Hideki Yamamoto, and Yoichi Hata. 2018. Counter
Attacks for Bus-off Attacks. In International Conference on Computer Safety,
Reliability, and Security. Springer, 319–330.

[20] Xilinx. 2016. CAN v5.0 LogiCORE IP Product Guide. (August 2016). https://www.
xilinx.com/support/documentation/ip_documentation/can/v5_0/pg096-can.pdf

[21] Clinton Young, Joseph Zambreno, Habeeb Olufowobi, and Gedare Bloom. 2019.
Survey of Automotive Controller Area Network Intrusion Detection Systems.
IEEE Design & Test (2019).

Session 3: Intrusion Detection and Prevention CPS-SPC ’19, November 11, 2019, London, United Kingdom

73

https://doi.org/10.1109/CCST.2016.7815711
https://doi.org/10.1109/SP.2010.34
https://www.xilinx.com/support/documentation/ip_documentation/can/v5_0/pg096-can.pdf
https://www.xilinx.com/support/documentation/ip_documentation/can/v5_0/pg096-can.pdf

	Abstract
	1 Introduction
	2 Threat Model and Assumptions
	3 Controller Area Network (CAN) Background
	3.1 CAN Error Handling
	3.2 Security Challenges of CAN

	4 Intrusion Prevention System Design
	4.1 ECU Architecture and General System Model
	4.2 Detectors
	4.3 Attack Mitigation and Recovery
	4.4 Discussion and Limitations

	5 IPS Implementation
	6 Experimental Validation
	6.1 Area
	6.2 Detection Latency
	6.3 Time to Error Passive and Bus-Off States
	6.4 Case Study

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

