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Abstract—The proliferation of embedded devices in modern
vehicles has opened the traditionally-closed vehicular system to
the risk of cybersecurity attacks through physical and remote
access to the in-vehicle network such as the controller area
network (CAN). The CAN bus does not implement a security
protocol that can protect the vehicle against the increasing cyber
and physical attacks. To address this risk, we introduce a novel
algorithm to extract the real-time model parameters of the CAN
bus and develop SAIDuCANT, a specification-based intrusion
detection system (IDS) using anomaly-based supervised learning
with the real-time model as input. We evaluate the effectiveness of
SAIDuCANT with real CAN logs collected from two passenger
cars and on an open-source CAN dataset collected from real-
world scenarios. Experimental results show that SAIDuCANT
can effectively detect data injection attacks with low false positive
rates. Over four real attack scenarios from the open-source
dataset, SAIDuCANT observes at most one false positive before
detecting an attack whereas other detection approaches using
CAN timing features detect on average more than a hundred
false positives before a real attack occurs.

Index Terms—CAN bus, intrusion detection system, timing
model, real-time systems

I. INTRODUCTION

The connected car industry is quickly growing, and by some
estimates will account for almost $40 billion in annual revenue
by 2020 [1]. This growth is led by cyber-physical system
(CPS) advancements in enhancing safety and automation,
and by expanding use of Internet connectivity for in-vehicle
infotainment, which brings connected cars into the Internet
of Things (IoT). These applications have increased the cyber
connectivity and complexity of vehicles, as demonstrated by
the rising number of electronic control units (ECUs), wireless
communication interfaces, and software lines of code in the
modern vehicle. The dramatic increase in vehicle functionality
however also makes the vehicular systems, including the
safety-critical systems, more vulnerable to cybersecurity risks
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and attacks [2]. Vulnerabilities across the autonomous vehi-
cles, vehicular ad-hoc networks, vehicle-to-vehicle, vehicle-to-
infrastructure, connected car, intelligent transportation system,
and even traditional (non-connected) automobiles motivate
adversaries to launch cyberattacks against vehicles [3]. Unfor-
tunately, today’s car lacks the necessary security mechanisms
to protect the vehicular system from attack.

A critical asset to secure is the automotive in-vehicle
network, which facilitates communication between ECUs over
multiple physical networks and protocols, with the most preva-
lent being the controller area network (CAN). An adversary
may subvert the in-vehicle network through attack surfaces
that increase proportionally to new vehicle features. Physical
access to the on-board diagnostics (OBD-II) port can be
used to easily compromise the network, while remote access
through a wireless or cellular connection can greatly increase
an attack’s scalability and reduce exposure of the attacker.
Bluetooth attacks have been demonstrated by Checkoway et
al. [4], while Miller and Valasek [5] accessed a Jeep Cherokee
through its WiFi network by exploiting a weakness in its
password generation protocol. Once access to the in-vehicle
network is achieved, the attacker can manipulate and delete
data, degrade vehicle functions, and even take over control of
the vehicle. The limited computational, memory, and power
resources of ECUs hinder the implementation of complex
security mechanisms. Hence, lightweight and computationally
efficient algorithms are an important requirement in imple-
menting security mechanisms for the in-vehicle network.

We introduce Specification-based Automotive Intrusion De-
tection using Controller Area Network Timing (SAIDuCANT),
a specification-based intrusion detection system (IDS) that
uses the real-time model of the CAN bus to specify intended
behavior, and then detects violations of the model as signs
of a compromised network. Given an instance of a message,
we aim to determine if its completion time aligns with the
timing model specification of the message. Our approach
to this problem is to infer the parameters of the real-time
model of the CAN bus during normal operation. Using the
schedulability analysis of the network, which guarantees that
message deadlines will be met in the worst-case, we derive
the timing model specification for a set of messages and
hypothesize that messages that do not fit into this timing model
are anomalous. The timing model expresses the behavior of
the CAN bus from which anomalous deviations indicate an
attack is in progress. Although our focus is on the CAN bus
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as the in-vehicle network, we expect our results would apply
well to any network that provides real-time behavior.

The contributions of this paper are:
1) A method for extracting real-time model parameters

from observations of CAN bus message behavior with-
out prior knowledge.

2) A specification-based IDS based on real-time schedula-
bility response time analysis of the CAN bus.

3) Two new metrics for measuring the performance of
automotive intrusion detection systems. These metrics
provide essential and useful information that can be used
in making a decision about the IDS more so than the
traditional classifier metrics.

4) Prototype and evaluation of real-time model
specification-based IDS using real CAN logs generated
from passenger sedan vehicles. The evaluation shows
that SAIDuCANT outperforms existing timing-based
IDS for CAN and especially exhibits a low false
positive rate in normal data prior to the start of an
attack.

This paper extends our previous work [6] with modifications
to the detection algorithm to improve its classification perfor-
mance, expansion of the evaluation using additional metrics
and data from real attacks, and comparison of our approach
with other work that uses the timing features of CAN bus
messages for intrusion detection.

The remainder of this paper is organized as follows. In
Section II, we discuss the related work on specification-
based intrusion detection systems for in-vehicle networks.
Section III provides a primer on CAN response time analysis.
Section IV describes the design of SAIDuCANT including the
threat and attack model, timing model extraction, and anomaly
detection. In Section V, we describe the experimental setup
for evaluation, and Section VI presents the experiments and
results. Section VII discusses SAIDuCANT’s limitations and
possible directions for future work. Section VIII concludes the
paper.

II. RELATED WORK

Security problems of in-vehicle networks have been studied
over the years by several researchers [7]. Koscher et al. [8]
were the first to demonstrate and perform practical attacks
on vehicles. The authors demonstrated complete control of a
wide range of automotive functions by sniffing the CAN bus
and reverse engineering ECU code. Hoppe et al. [9] demon-
strated practical attacks on the CAN bus, and demonstrated
an anomaly detection method by looking at the frequency
of messages transmitted on the bus. Existing works have
applied cryptographic techniques to in-vehicle networks, such
as digital signatures, encryption, and message authentication
codes [10], [11], [12], but the communication overhead of
these techniques is very high, making them unsuitable or at
least difficult in practice for the CAN bus.

A plethora of automotive in-vehicle network IDSs have been
developed over the years that explore methods of detecting
anomalies as indicative of intrusions [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],

[28]. However, none of these works use a specification-
based approach, instead relying on message properties such
as frequency [9], [16], [24], [28], inter-arrival time [19], [22]
and entropy [14], [20], or physical properties of ECUs such as
their clock drift [18] or voltage [25]. SAIDuCANT captures
the behavior and models the timing of the CAN messages
to extract the specification of the network activities to detect
intrusions. More precisely, we use the worst-case response
time analysis of each message to build a set of specifications
for message transmissions to compare with observed network
activities to detect intrusions. In the following we contrast
SAIDuCANT with prior work in specification-based IDSs.

A specification-based detection method relies on a spec-
ification that describes the behavior of the system compo-
nents. This legitimate behavior of the system is described
by its functionalities and the constraints of other interacting
components. The monitoring of the system activities involves
detecting deviations from the sequence of operations outside
of the specification, which are considered intrusions. Expected
behavior of the system components may be manually ex-
tracted and crafted as security specifications [29]. Manually-
defined specifications can provide low false positive rates
when compared with other anomaly-based detection methods
[30]. An advantage of specification-based detection is that
the IDS is effective immediately when the specification is
defined, as there is no user or data profiling involved. However,
the amount of work required in capturing and verifying the
correctness of a specification is a major drawback.

Specification-based detection has been applied to sev-
eral systems including network protocols, applications, and
CPSs [31], [32], [33], [34], [35]. Mitchell and Chen [31], [32]
proposed a behavior-rule specification-based IDS for medical
CPS and unmanned aircraft systems. In their approach, they
use a binary failure threshold to classify a node as normal or
malicious based on the node’s compliance threshold. Esquivel-
Vargas et al. [35] proposed an approach to automatically de-
ploy a specification-based IDS to monitor a building automa-
tion system using rules that represent valid device behavior in
BACnet networks to detect violations in the network traffic.
Fauri et al. [34] proposed an approach to combine formal
specification with anomaly-based monitoring to overcome the
semantic gap between network anomalies and actionable alerts
by leveraging the lightweight logical system specification.

The concept of specification-based detection for CAN bus
was first investigated by Larson et al. [36]. They described
the application of a specification-based IDS for the CANopen
protocol using the application protocol layer. They show that
potential attacks can be detected from the trace of extracted
information through theoretical simulation, and concluded that
the most important ECU to protect is the gateway ECU.

Studnia et al. [37] proposed a language-based detection
approach using language theory to develop a set of attack
signatures from the behavioral model of CAN. The authors
generate sets of forbidden sequences from the behavioral
model that corresponds to the manifestation of possible attacks
on the network that they seek to detect. Lee et al. [38] proposed
an IDS called OTIDS that measures the response performance
of network nodes based on the offset ratio and the time interval
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Fig. 1: CAN Message Structure

between request and response in CAN messages. The authors
claim that each node has a fixed response offset ratio and time
interval in a normal operation mode which varies significantly
in attack modes. This difference in the offset ratio and time
intervals is used to detect attacks in the network.

SAIDuCANT differs from the prior art because we leverage
real-time schedulability analysis of messages to automate
creating a specification. The novelty of our approach is in the
close coupling we create between real-time theory and intru-
sion detection, and in the automation of parameter extraction.

III. CONTROLLER AREA NETWORK (CAN) BACKGROUND
AND RESPONSE TIME ANALYSIS

CAN is a message-based protocol that uses a lossless
bitwise arbitration to transmit binary signals over twisted pair
cabling. Dominant bits represent the logical 0, and recessive
bits the logical 1. As shown in Figure 1, data is transmitted
between ECUs via frames that include an Identifier field,
Control field, Data field, and a Cyclical Redundancy Check
(CRC). The CAN protocol includes collision detection and
avoidance, error detection, signaling, and fault confinement.

CAN efficiently implements static fixed priority non-
preemptive scheduling of messages through bus arbitration.
CAN messages may be periodic, sporadic, or aperiodic. Pe-
riodic message instances arrive at a regular interval with
a fixed length called period. Sporadic messages recur with
a minimum inter-arrival time between successive instances,
while aperiodic message instances occur at arbitrary times.

Each transmitting message goes through the arbitration
process to determine which wins the bus. When a message
wins arbitration and starts transmission, it becomes non-
preemptable. Messages win arbitration according to their prior-
ity, which is determined by the message identifier (ID): lower
IDs have higher priority.

CAN bus is susceptible to faults due to electromagnetic
interference (EMI). EMI errors can be modeled as a random
single bit fault in CAN bus that, when detected, will cause a
receiver to transmit an error frame and cause retransmission
of the original message [39], [40]. If an error is detected
either by the sending node or in the CRC field, the error is
signaled directly to all the nodes on the bus. The receiving
nodes will discard the received erroneous message, and the
sending node, assuming only a transient fault on the wire,
then enters arbitration to retransmit the message frame. The
error recovery process transmits up to 31 bits in the worst case
(error signaling and recovery time is typically between 17 to
31-bit times) in addition to the retransmission of the message.

Tindell et al. [40], [41] and Davis et al. [42] present a real-
time model and worst case response time analysis of the CAN
bus derived from fixed priority response time analysis (RTA)
of CPU scheduling. We adopt their terminology and rely on
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Fig. 2: CAN Message Transmission States.

some of their key results in developing our specification-based
approach. For readers familiar with real-time schedulability,
the key difference between task scheduling and CAN message
scheduling is the use of messages in place of tasks, and each
release of the message is a message instance rather than a
job. A message is parameterized by its period and ID, which
is a unique identifier and also the message’s priority, with a
lower ID having a higher priority. Every period units of time,
a message releases another message instance. Each message
instance has its own transmission time and queuing jitter with
a data payload of 0 to 8 bytes. The length of the data payload
is specified in the Data Length Code (DLC) frame field.

As illustrated in Figure 2, messages go through the steps
of message release, queuing for transmission, arbitration, and,
finally, transmission. The process involving a message release
includes the preparation and storage in the software queue,
which is considered part of the computation time of the node
sending the message. A message release time is the time
instant the message is ready to be written into the priority-
based transmission buffer queue. When a message is released,
it is written to an available transmission buffer, or if there is no
available transmission buffer, it is stored in the host controller
(CPU) priority-based software queue until a buffer is available
for writing it. Once written to the transmission buffer, the
message is ready for transmission. In the transmission buffer,
messages go through an arbitration process, and the message
with the highest priority gets to transmit in the bus.

Our notation is summarized in Table I. M denotes an
ordered set of messages, and Mi ∈ M is a message with
ID i in the set. Mi,k denotes the kth instance of Mi, which
has completion time Ti,k. If Mi is periodic, the time from
0 until the occurrence of the first instance i.e., Mi,1, is the
message phase, denoted by φi. Concretely, the kth instance
of Mi, denoted as Mi,k, is released at time φi + (k − 1)Pi
and should complete its transmission by time φi + k(Pi),
where (k = 1, 2, . . . ). A message may also have a deadline,
however we assume a constrained, implicit deadline (equal
to the period). Thus, Mi can be characterized by a 3 tuple
(φi, Ci, Pi), representing the message phase, the message
worst-case transmission time, and the period respectively.

Davis et al. [42] determine a message worst-case response
time (WCRT) by taking the maximum response time over the
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TABLE I: Table of Notations for Response Time Analysis

Variable Definition
M set of messages M = (M1,M2, . . . ,Mn)

Mi ∈M the ith message
Ci transmission time
Pi message period
P̃i estimated period
Ri worst case response time
Ji the queuing jitter
wi the queuing delay
Bi the blocking time

fi,min lower bound on completion time relative to release
fi,max upper bound on completion time relative to release
Mi,k the kth instance of message mi

φi phase of Mi

Ti,k completion time of Mi,k (CAN message time stamp)
τbit the transmission time of a single bit
Ei the error overhead

instances of the message in a busy period,

Ri = max
q∈[0,Qi−1]

(Ri(q)) (1)

where Qi is the number of instances of message Mi that
become ready for transmission before the end of the busy
period, and Ri(q) is the WCRT of instance q. Ri(q) and Qi
are given by

Ri(q) = Ji + wi(q)− qPi + Ci (2)

Qi =

⌈
ti + Ji
Pi

⌉
(3)

where Ji, the queuing jitter of the frame, corresponds to the
maximum time variation between the release of a message
instance and queuing the message for transmission; wi, the
queuing delay under faults, corresponds to the maximum time
a message can remain queued before successfully transmitting.
This delay may be due to other higher and lower priority
messages using the bus. Ci, is the transmission time, which
corresponds to the maximum time a message can take to
be transmitted. ti is the length of the priority level-i busy
period during which only messages with higher priority to
i get transmitted. The busy period of the message ends at
the earliest time that the bus becomes idle or when messages
of lower priority get transmitted. ti is found by solving the
following recurrence relation with a starting value of t0i = Ci
and ending when tn+1

i = tni :

tn+1
i = Bi + Ei(t

n
i ) +

∑
k≤i

⌈
tni + Jk
Pk

⌉
Ck (4)

where Bi is the blocking time, which is the longest time that
any lower priority message can occupy the bus while message
Mi is queued, and is given by

Bi = max
k>i

(Ck). (5)

The worst case overhead caused by the error recovery
mechanism that can occur for a given time interval is

Ei(ti) =
(

31τbit + max
k≥i

(Ck)
)
F (ti) (6)

where there can be 31 overhead bits for error signaling, and
τbit is the transmission time of a single bit (determined by the
bus speed). F (ti) is a step function that yields the maximum
number of errors on the bus for a time interval and must be
a monotonic non-decreasing function. According to Broster et
al. [43], the expected number of errors for the fault model in
an aggressive environment is 30 faults per seconds.

The queuing delay wi is composed of two elements: Bi, the
blocking time as given in Equation 5, and Ii, the interference
time, which is the longest time that all higher priority messages
can occupy the bus before the message i is finally transmitted,
given by

Ii =
∑
k<i

⌈
wi + Jk + τbit

Tk

⌉
Ck. (7)

Therefore, the queuing delay wi is given by:

wi = Bi + Ii (8)

The worst case queuing delay wi given an error model
to account for random errors on the bus is determined by
calculating the delay for each of the Qi instances, and is given
by the following recurrence relation:

wn+1
i (q) = Bi + E(wni + Ci) + qCi + Ii (9)

with starting value w0
i (q) = Bi + qCi and terminating when

wn+1
i (q) = wni (q). This analysis adds a degree of pessimism

as it includes the 3-bit inter-frame space in the computed
queuing delay, which can be removed by subtracting 3τbit from
the calculated response time values.

IV. REAL-TIME SPECIFICATION-BASED IDS DESIGN

Expected regularity of messages in the CAN bus motivates a
supervised learning approach to create the specification-based
IDS. In a supervised learning approach, a classifier is trained
to differentiate between normal and anomalous behavior. Su-
pervised learning uses training and detection phases. In the
training phase, the IDS collects CAN traces that represent
the normal behavior of the network and extracts real-time
parameters as the features that compose the specification. In
the detection phase, the behavior of each message observed
on the bus is checked whether or not it conforms with the
specification. In our current analysis we restrict to checking
only the periodic and sporadic messages. In this section, we
present the design of SAIDuCANT starting with the assumed
threat model. Then, we describe the method used in the
training phase to extract real-time model parameters from
observations of CAN bus messages before explaining the
detection phase’s algorithm using those parameters.

A. Threat and Attack Model

In this paper, we focus on impersonation attacks (masquer-
ade, replay, or injection), in which the goal of the adversary is
to control the vehicle. ECUs on the CAN bus take action based
on the most recently received data field of specific IDs that
they are programmed to monitor. By transmitting an injected
message soon after the authentic message of the same ID is
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transmitted, the attacker’s injected message will be acted on
by the ECUs on the bus instead of the authentic message.

We assume an adversary is able to receive and send mes-
sages on the CAN bus. A receive operation involves eaves-
dropping messages, and a send operation involves transmitting
injected (forged or replayed) messages. We assume the adver-
sary does not modify any regular transmission of messages,
but observes the network traffic to learn about the transmission
pattern and properties of the data packets of a particular node
and then impersonates that node. This assumption fits with
the known attacks such as replay and masquerade attacks that
penetrate the CAN bus by first subverting a non-critical ECU,
and then eavesdrop and inject messages targeting the critical
ECUs, but do so while behaving according to the bus protocol.
SAIDuCANT aims at detecting the active transmission of an
attacker, and is unable to detect passive tools that eavesdrop
and record network traffic, since they do not interfere with the
timing of messages transmitted on the bus.

B. Timing Model Extraction
Although we expect messages within a CAN bus to be

schedulable according to some real-time model, we do not
expect to know the actual model or its parameters for a given
system. The exact timing model and its parameters, especially
precise message periods, are difficult to obtain—they are not
normally disclosed by manufacturers. Thus, we assume the
RTA-based model described in Section IV and derive its
real-time parameters from observations of the CAN bus. The
model and parameters comprise the IDS specification. Once
the specification is learned, it does not change over time unless
features are added to the vehicle, for example by reflashing an
ECU with a software update, in which case the RTA model
would need to be relearned.

Algorithm 1 infers bounds at which the period of each mes-
sage could occur by reconstructing the steps the message will
go through before transmission. Bounded parameter estimates
are derived from CAN bus activity by calculating upper and
lower bounds for each message’s period (inter-arrival time).
The algorithm extracts for each distinct message Mi a bounded
period estimate, fi,min, fi,max, and the transmission time Ci.

Algorithm 1 takes as input a CAN log and message ID i. It
returns the estimate P̃i of the period by iteratively calculating
upper and lower bounds on the release and inter-arrival times
of successive message instances. The release time of the
first message instance of a given message cannot be inferred
directly, because the system state prior to the first observed
message is unknown. Thus, the first instance of each message
is ignored. In line 4, the algorithm scans backward to find
the timestamp of the previous message with lower priority or
the time the bus is in an idle state. We are uncertain of the
release time of Mi,k: it may have occurred at any point during
recent higher-priority messages that may have interfered with
its transmission until the most recent lower-priority message
or an idle bus. Thus, the algorithm pessimistically selects
the earliest and latest possible release times of the current
message, denoted Lcur and Hcur.

To construct a bounds on the period, the algorithm subtracts
the latest and earliest release of the previous instance of the

Algorithm 1 Estimate the period and release jitter of a
message Mi given a partial Log and ID i.

1: function DERIVEPERIODICPARAMETERS(Log, i)
2: fi,min, fi,max ← 0,∞
3: for Mi,k ∈ Log, k ≥ 1 do
4: Tl,m ← FindPreviousTimestamp()
5: Lcur ← Tl,m − Cl,m
6: Hcur ← Ti,k − Ci,k
7: if k > 2 then
8: ∆L ← Lcur −Hpast

9: ∆H ← Hcur − Lpast
10: if ∆L > fi,min and ∆H < fi,max then
11: fi,min, fi,max ← ∆L,∆H

12: Lpast, Hpast ← Lcur, Hcur

13: P̃i = fi,min
14: Ji = fi,max − fi,min
15: return (P̃i, Ji)

same message from the earliest and latest release of the current
instance, respectively, to obtain ∆L and ∆H . These ∆ values
represent the smallest and largest possible inter-arrival time
between the previous and current instance. fi,min and fi,max
are, eventually, the ∆L and ∆H that are closest to each other.

The final value of fi,min is taken as the estimated period
P̃i, which, assuming a constant actual period and non-negative
release jitter, is no greater than the actual period. The release
jitter is the difference between fi,max and fi,min, which
describes the maximum error in the estimated P̃i because the
actual period is no greater than fi,max.

Since vehicles of the same make, model, and even trim
can offer different features, two seemingly identical cars may
have distinct RTA specifications. Thus, the specification of a
particular car must be obtained by running Algorithm 1 to
extract the node IDs and their timing characteristics. Figure 3
shows two distinct messages for Car X and Car Y with
the inferred period bounds from Algorithm 1. The difference
between the lower and upper bound represents the tightness
in the minimum and maximum timestamp that a message
can assume. There is a variation in this tightness as seen
in Figure 3 which is indicative of the performance of the
algorithm on the messages in a CAN bus. Car Y shows
a slightly loose bound compared to Car X. Algorithm 1
obtains upper and lower bounds for each ID that are within
approximately 5ms of each other; thus an attacker cannot
successfully inject a message without violating the expected
period of the next authentic message, because the inferred
period converges within ±2ms of the real period. Since the
real period of automotive CAN messages is on the order of
10, 100, or 1000ms, an adversary can only inject additional
messages without being detected if the range between upper
and lower bounds is greater than 5, 50, or 500 ms, respectively.
With SAIDuCANT, the tightness on the estimate of the period
makes detection of message injection attacks possible.
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(a) Message A Car X. (b) Message A Car Y.

Fig. 3: Variation of inferred lower and upper bound of the
period for consecutive instances of different message IDs.

C. Anomaly Detection

SAIDuCANT monitors the bus and calculates an interval
of possible values that bounds the valid completion time of
each message instance. This calculation relies on the learned
parameters and the RTA model as a specification, and on the
history of observations of messages that have been transmitted
on the bus since the time the bus was last idle. This history
contains each message’s priority, transmission time, and the
data payload, which are necessary to account for blocking
and interference factors that delay the time between a message
instance release and its transmission. A message is considered
anomalous if its completion time violates the acceptable
interval defined by the specification of its real-time parameters.

We obtain the response time of each message using Equa-
tion 1 with the estimated P̃i and Ji determined by Algorithm 1.
We use this response time in a supervised learning algorithm to
classify messages as normal or anomalous. Algorithm 2 takes
as input a message instance’s completion time, the estimated
period, response time, phase, and the instance count. Note that
we estimate the phase φi as Ti minus Ci of the first instance.
Algorithm 2 calculates the minimum timestamp that a message
instance can assume by adding the phase to the instance mul-
tiplied by the period. The maximum timestamp represents the
minimum timestamp plus the WCRT. The algorithm classifies
the message instance as normal if its actual timestamp falls
between the calculated minimum and maximum timestamps.
Algorithm 2 is O(1) for each message received from the bus.

We call a message instance delayed if it does not arrive
by the expected maximum timestamp, and dropped if it does
not arrive by the minimum timestamp of the next instance.
Algorithm 2 classifies as normal the first message instance
after dropped messages (Lines 6-8), and classifies delayed
messages as normal (Lines 11-12).

D. Example

Consider the message log and schedule in Figure 4, com-
posed of messages M1(0, 0.27, 0.675), M2(0, 0.27, 0.945),
and M3(0, 0.27, 1.89) with M1 having the highest priority (of
1) and M3 having the least priority (of 3), and with time in
milliseconds. The busy period starts at time t = 0 with the
release of all the first message instances, M1,1,M2,1,M3,1,
and M1,1 wins arbitration. Thus, M1,1 causes interference for
both M2,1 and M3,1. At t = 0.675, M1 releases instance M1,2

Algorithm 2 Anomaly detection from timing specification.

1: function DETECT(Ti,k, P̃i, Ri, φi, k)
2: mints ← φi + (P̃i ∗ k)
3: maxts ← mints +Ri
4: nextmints ← mints + Pi
5: nextmaxts

← maxts + Pi
6: if Ti,k > nextmaxts

then

7: k ←
⌈
Ti,k−φi

Pi

⌉
8: return 0
9: if mints ≤ Ti,k ≤ maxts then

10: return 0 ← normal
11: if maxts ≤ Ti,k < nextmints then
12: return 0 ← normal
13: else
14: return 1 ← anomalous
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Mi,k DLC Data Ti,k
M1,1 8 FF FE 7E F0 86 0B 30 00 0.27
M2,1 8 6F 9F 6F 94 0F A0 EE 0B 0.54
M3,1 8 01 F4 02 4D 04 18 82 B6 0.81
M1,2 8 FF FE 7E F0 86 0B 30 00 1.08
M2,2 8 6F 9F 6F 94 0F A0 EE 0B 1.35
M1,3 8 FF FE 7E F0 86 0B 30 00 1.62
M2,3 8 6F 9F 6F 94 0F A0 EE 0B 2.16
M1,4 8 FF FE 7E F0 86 0B 30 00 2.43
M3,2 8 01 F4 02 4D 04 18 82 B6 2.70

Fig. 4: Example of periodic message behavior in CAN bus
(Time in ms.)

while M3,1 is in transmission, thus blocking M1,2 until M3,1

completes. The bus is idle from t = 1.62 to 1.89.
To better understand how the fi,min and fi,max are calcu-

lated, consider M1. The first instance M1,1 is ignored. For
M1,2, scanning backward finds that the preceding message is
of lower priority, which implies that the release of this message
occurs during or immediately after the transmission of M3,1.
Therefore, a lower bound on the release time is given by sub-
tracting the transmission time from the timestamp of the pre-
ceding message, i.e., Lcur = T3,1−C3,1 = 0.81−0.27 = 0.54.
The upper bound is always calculated directly from the mes-
sage instance, e.g., Hcur = T1,2−C1,2 = 1.08−0.27 = 0.81.
The range from [(T3,1 − C3,1), (T1,2 − C1,2)] = [0.54, 0.81]
describes the maximal time interval that M1,2 could have spent
waiting for transmission. As expected, M1,2’s actual release
time 0.675 ∈ [0.54, 0.81]. Because the first instance does not
calculate an upper and lower bound, the second instance is not
able to calculate a valid ∆L or ∆H , so the algorithm stops
processing this instance, stores the calculated Lcur and Hcur
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as Lpast and Hpast, and moves on to M1,3. Scanning backward
from M1,3 find that the previous message M2,2 has lower
priority, so Lcur = T2,2 −C2,2 = 1.35− 0.27 = 1.08. Again,
the upper bound is calculated as Hcur = T1,3−C1,3 = 1.62−
0.27 = 1.35. Now ∆L = Lcur −Hpast = 1.08− 0.81 = 0.27
and ∆H = Hcur − Lpast = 1.35 − 0.54 = 0.81. These
calculated bounds are used as the first estimates for the period,
so f1,min = 0.27 and f1,max = 0.81 after processing M1,3.
The actual period of M1 = 0.675 ∈ [0.27, 0.81]. For M1,4,
the algorithm calculates ∆L = 1.89 − 1.35 = 0.54 and
∆H = 2.16−1.08 = 1.08. Although the new ∆L improves on
f1,min, the new ∆H is worse than the f1,max so the bounds
are not updated. As the log ends with no more instance of M1,
its estimated period and jitter are P̃1 = 0.27 and J1 = 0.81.

V. EXPERIMENTAL SETUP

We evaluate SAIDuCANT using data we collected and with
published datasets. We collected data from two different sedan
vehicles, Car X and Car Y, which are the same make but differ-
ent model and year. The vehicles are operated in a controlled
setting on a dynamometer in the Cyber Security Laboratory of
the National Transportation Research Center managed by Oak
Ridge National Lab, and CAN log data are collected through
the OBD-II ports. The vehicles have a medium speed CAN
bus and high speed CAN bus. Initial test data was recorded
for the vehicle state comprising ignition key turn (handbrake
on), acceleration, maintaining a constant speed, braking, and
reverse. We performed attacks by injecting malicious messages
at high frequency to override normal vehicle operations. These
malicious messages were constructed by spoofing legitimate
messages. Messages are injected at different intervals through
the OBD-II port for about 60 seconds at a frequency higher
than normal to cause a malfunction in the vehicle.

Furthermore, we evaluated the performance of SAIDu-
CANT using CAN data from Hacking and Countermea-
sure Research Lab made available for research purposes1.
The dataset contains a standard vehicle operation and attack
datasets comprising fuzzy, RPM spoofing, gear spoofing, and
DoS attacks. These datasets were recorded from a real vehicle
through the OBD-II port. The ground truth about the dataset
is known as it contains information about regular and injected
messages. For the gear and RPM spoofing attacks, the respec-
tive IDs are injected every 1 millisecond. The fuzzy attack
dataset contains randomly injected messages IDs performed
every 0.5 milliseconds while DoS attack dataset contains
attacks where the dominant message ID 0000 is injected every
0.3 milliseconds to disrupt the vehicle functions.

We observed messages that appear just once in a log. These
messages appeared mostly at the beginning of the log, and we
suspect they relate to the initial startup of the vehicle. We have
ignored these one-time messages in our results.

To evaluate IDS performance we use traditional classifica-
tion metrics by collecting the number of true negatives (TN),
true positives (TP), false negatives (FN), and false positives

1https://sites.google.com/a/hksecurity.net/ocslab/Datasets/CAN-intrusion-
dataset

(FP), and calculating the accuracy, recall, precision, and F1
score in the usual way:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

FP + TP
(12)

F1 Score = 2 ∗ Precision ∗Recall
Precision+Recall

(13)

We also introduce two new metrics for characterizing per-
formance of an automotive IDS, the time to detection (TTD)
and false positives before attack (FPBA), that we define as

TTD = TD − TA (14)

FPBA =
∑

m∈Log[0:TA]

isFP (m) (15)

where TD and TA denote the detection time and completion
time of the first instance of an injected attack message,
respectively, Log[x : y] is a subsequence of messages observed
on the network from time x until y, and isFP (m) is a binary
valued function that returns 1 if message m is a false positive,
and 0 otherwise. The TTD measures the time after an attack
happens before it is detected, hence it is a latency indicator of
IDS performance. FPBA captures the classifier performance
prior to the existence of an attack.

These metrics provide a more meaningful measure of perfor-
mance than the traditional classifier metrics. The information
provided by these metrics relate the classifier accuracy with
the timeliness of detection. Often, traditional classifier metrics
are used for measuring model or algorithm performance, but
they may give a false sense of performance by achieving
high accuracy and low false positive rates that still translate
to an impractical solution. For example, even 0.01% false
positive rate implies one false positive per second in a 1 Mbps
bus. We introduce TTD and FPBA, which have never been
used for evaluating automotive IDSs, to better classify IDS
performance with respect to timely, accurate detection.

VI. EXPERIMENTS

We conducted five experiments using the two datasets. The
first experiment evaluates SAIDuCANT in the absence of
attacks, and the second evaluates with attacks, both using the
dataset collected at ORNL. In the third experiment, we vali-
date the performance of SAIDuCANT with synthetic attacks
derived from that dataset. The fourth and fifth experiments
evaluate SAIDuCANT using the open research data, and com-
pare SAIDuCANT with interval- and frequency-based IDSs.

A. Experiment 1: All normal data

First, we recorded data for six representative datasets on Car
X and five on Car Y. Each dataset is composed of data recorded
for about 120 seconds of standard vehicle operations, i.e.,
normal data. One of the datasets (training dataset) is used to
extract the timing model specifications of each message on the
bus by applying Algorithm 1. The other datasets (test datasets)
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are used to validate the model by invoking Algorithm 2 for
every message instance. A message instance is classified as
anomalous if 1.) The message ID was not recorded during
training, or 2.) Algorithm 2 returns anomalous.

TABLE II: Outcome of SAIDuCANT on normal data

Cars Messages TN FP Accuracy

Car X

486091 485476 615 0.9987
323942 323673 269 0.9992
241157 241061 96 0.9996
246741 246650 91 0.9996
239107 239047 60 0.9997

Car Y

345781 345451 330 0.9990
327604 327310 294 0.9991
381907 381383 524 0.9986
337575 337086 489 0.9986

For this experiment, which does not have attack data, any
anomalous labels are false positives and normal labels are true
negatives. Thus, the accuracy is simply the ratio of normal
labels to total messages. Table II shows the classifier accu-
racy of SAIDuCANT (Algorithm 2) over each test dataset.
Precision and recall are not calculated for this experiment
because the dataset does not contain any attack messages
which implies that there is only one relevant instance or data
point of interest in each dataset. The message column indicates
the total number of message instances present in each dataset.

About 48% of false positives we observed are from periodic
messages with the same ID, but different phases. These mes-
sages exhibit the same behavior as a regular message, except
they appear to either release multiple instances per period, or to
transmit several messages with identical periods that are offset
from each other. Our current detection algorithm is unable
to classify these messages because we have assumed one
periodic message per ID. We discuss other possible sources
and mitigation for false positives in Section VII.

B. Experiment 2: Real Attack
This experiment considers the algorithm performance on a

real attack dataset involving the vehicle backup light for Car
X. We performed a message injection attack that activates the
backup light every 700 microseconds. The injections are made
in intervals of length 15 seconds, with 15 seconds of non-
injected messages in between. Thus, the attack data contains a
mix of normal and attack message instances during injection
intervals [15, 30] and [45, 60] seconds, and normal message
instances outside those intervals.

In this experiment, due to infrastructure limitations, we are
not certain which logged messages are from our injection
and which are from the vehicle’s normal operations. Thus,
we cannot calculate metrics of classifier performance for this
experiment. In this experiment we injected 2,845 messages
to Car X as it was being driven on the dynamometer. The
attack log contains 154,564 message instances, with 3,767 of
them labeled anomalous by Algorithm 2. Although we cannot
distinguish our injected messages from authentic ones in the
log, we can say that we did not observe any anomalous labels
for message instances of the injected message ID outside of
the injection intervals, so we have confidence that the injected
messages are, mostly, correctly labeled anomalous.

C. Experiment 3: Synthetic Attacks

We simulate message injection attacks on the test datasets
by injecting a particular ID 2 to 3 times faster when an idle
bus time is observed. This attack is achieved by recreating the
expected message trace and injecting message IDs during the
idle time. The idle time is used to ensure that the simulated
attacks are accurately spaced to avoid any overlap in the
message timestamp. The injected message is not altered, thus
maintaining the same field properties as a normal message but
with a different timestamp. The timestamps of the injected
messages are set to fit within the limit of the idle time.

In this experiment, we have both attack and benign mes-
sages, and we know the ground truth because we know which
messages we injected. Thus, we present the classification FP,
TP, FN, and TN. Table III shows the classifier performance of
Algorithm 2 for the synthetically generated attack data. The
message column shows the total number of messages in each
dataset. The predictive value of our positive test indicates an
approximation of 90 to 99 percent accuracy. An average 91
percent recall indicates that the algorithm mostly labels the
injected anomalous data correctly.

D. Experiment 4: Real Attacks (open-source data)

In this experiment, we consider the algorithm performance
on the open-source attack data. Table IV shows the classifier
performance on the four attack datasets. In spoofing the gear
and RPM datasets, the injected IDs constitute 99.72% and
99.91% of the total number of false positives, respectively.
We found that before the start of the message injection attack,
SAIDuCANT detects no FP in both datasets. This implies that
when the IDs are being injected, they contribute to the regular
IDs missing their expected deadlines, which results in false
positives. For the fuzzy attack dataset, the false positives are
distributed across the injected IDs. The DoS attack dataset
exhibits zero false negatives with a small number of false
positives (< 0.003%) in the whole dataset.

E. Experiment 5: Comparison with other detection ap-
proaches

Using the same dataset from VI-D, we compare SAID-
uCANT with interval- and frequency-based detection ap-
proaches. In the interval-based detection approach, the IDS
reads the normal CAN frames to build a timing model for
each message ID interval. The IDS checks each message ID
and calculates the average time interval between subsequent
messages in the attack-free dataset. The generated intervals are
then used for detection against the attack datasets. If an interval
in the attack datasets is less than half of the calculated average
interval for the message ID, the IDS alerts for anomalous
behavior. The frequency-based detection approach calculates
the frequency of each message ID in the attack-free dataset.
Frequency is the rate of messages observed in a set time
interval. For this work, we used a time interval of one second.
If the frequency of a message deviates at a rate greater than
two times normal, the IDS indicates an anomaly.

Table V shows the performance of SAIDuCANT compared
to interval- and frequency-based detection. The table clearly
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TABLE III: Outcome of SAIDuCANT with synthetic data injection algorithm

Cars Messages TN FP FN TP Accuracy Precision Recall F1 Score TTD (ms) FPBA

Car X

493042 485467 624 620 6331 0.9975 0.9103 0.9108 0.9105 0 0
325766 323666 276 152 1672 0.9987 0.8583 0.9167 0.8865 0 0
243698 241056 101 95 2446 0.9992 0.9603 0.9626 0.9615 0 5
248428 246650 91 308 1379 0.9984 0.9381 0.8174 0.8736 0 7
241739 239047 60 208 2424 0.9989 0.9758 0.9210 0.9476 0 3

Car Y

346930 345451 330 130 1019 0.9987 0.7554 0.8869 0.8159 0 0
327604 327310 294 122 2433 0.9987 0.8922 0.9523 0.9212 0 0
381907 381383 524 230 1933 0.9980 0.7867 0.8937 0.8368 0 2
338869 337086 489 1 1293 0.9986 0.7256 0.9992 0.8407 0 51

TABLE IV: Outcome of SAIDuCANT with real attack dataset (open source)

Attacks Messages TN FP FN TP Accuracy Precision Recall F1 Score TTD (ms) FPBA
Gear Spoofing 4,443,142 499,934 674,784 97,318 3,171,105 0.8262 0.8245 0.9702 0.8915 10 0
RPM Spoofing 4,621,702 534,974 798,213 119,923 3,177,591 0.8033 0.8010 0.9636 0.8748 9 0
Fuzzy 3,838,860 479,781 455,447 12,066 2,891,565 0.8782 0.8639 0.9958 0.9252 0 1
DoS Attack 3,665,771 587,521 70,475 0 3,007,774 0.9808 0.9771 1.0 0.9884 0 0

TABLE V: Comparison of the SAIDuCANT with interval-based and frequency-based detection approaches

Attacks
Detection Approach

Interval-based Frequency-based SAIDuCANT
Recall TTD(ms) FPBA F1 Score Recall TTD(ms) FPBA F1 Score Recall TTD(ms) FPBA F1 Score

Gear Spoofing 0.9367 2 190 0.7185 0.8739 1585 793 0.8739 0.9702 10 0 0.8915
RPM Spoofing 0.9528 0 144 0.7332 0.9618 79 160 0.9231 0.9636 9 0 0.8748

Fuzzy 0.9787 0 133 0.7708 0.8845 133 65 0.8847 0.9958 0 1 0.9252
DoS Attack 0.9998 0 139 0.8176 0.9032 204 356 0.9032 1 0 0 0.9884

shows that SAIDuCANT performs better—in terms of both the
time it takes to detect attacks and the number of false positives
before an attack happens—compared to other approaches.
Over the four different attack scenarios, SAIDuCANT out-
performs other timing-based approaches with negligible (at
most one) FP prior to the start of an attack; in contrast, the
interval- and frequency-based approaches on average detect
over a hundred FP before an attack, and even in the best
case detected 65 FP before the attack started. SAIDuCANT
achieves these better results because the model specifications
leverage the network semantics based on real-time theory.
SAIDuCANT provides a significantly higher detection ratio
for DoS and fuzzy attacks compared to the other methods;
the F1 Score for SAIDuCANT algorithm is over 90 percent
compared to 80 percent for interval-based and approximately
90 percent for frequency-based approaches, respectively.

VII. DISCUSSION AND FUTURE WORK

Due to the stochastic nature of driving, we obtained different
results for each test dataset. The variability in different driving
modes is one of the causes of the disparities in the results.
Some of the data are recorded while the vehicles are in an
accessory mode, drive to accelerate, drive to decelerate, accel-
erate in reverse, decelerate in reverse, maintaining a constant
speed and braking operations. Also, the driver’s actions and
the underlying driving operations can be contributing factors to
the difference in the presence of CAN messages and therefore
the experimental results.

False positives can be reduced by manually tuning the upper
bound of some of the IDs with arbitrary large periods (in the
order of seconds) by 0.05ms without increasing the attacker’s
chance of successful data injection. However, blindly applying

a tuning number to the entire set of IDs increases the false neg-
atives. The need for this tuning is a result of uncertainty in the
RTA model, and future work could consider a more rigorous,
systematic approach to tuning automatically or adaptively to
accommodate for this uncertainty.

False positives may also be caused by hardware malfunc-
tions that significantly disturb the timing behavior of messages.
We did not observe any such scenarios in our experiments
because the vehicular systems operated normally. In our ap-
proach, if such malfunctions cause an ECU to transmit too
early or too often, then the behavior would be detected and
treated as an attack. Note that other timing-based IDS, such as
interval and frequency detection, would exhibit similar false
positive behavior in the presence of hardware malfunctions.

In our analysis, we observe some messages with multiple
periods, which Koyama et al. have described as Type-1 mixed
CAN messages [44]. These messages exhibit the same behav-
ior as regular periodic signals but have extra instances that are
triggered by events. These types of messages are common on
the medium-speed CAN bus used for body electronics in some
vehicles. For example, the door sensors of the car send their
status periodically as sort of a heartbeat, but when a change
occurs, such as someone opens the door, a status message is
sent immediately. Our current detection algorithm does not
perform very well in classifying these messages, because we
have assumed one periodic message per ID. We aim to better
classify such messages in future work.

Presently, our detection algorithm can detect attacks on
periodic and sporadic messages, but not aperiodic messages
or message IDs with several message instances per period.
However, most of the significant information relating to the
control of the safety systems in vehicles are transmitted
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periodically and sporadically with a single message instance
from a single source ECU. Aperiodic messages are difficult to
characterize because the timing of such a message cannot be
ascertained at any given time and, to our knowledge, cannot
be represented with a mathematical equation. In our analysis,
messages that occur once on the bus are not labeled anomalous
if their IDs are registered in the allowed list of nodes that can
access and transmit on the bus.

In an advanced attack scenario, an adversary stops the
transmission from the victim node before transmitting mali-
cious frames. We consider two cases for this scenario. The
first case is that the attacker compromises the victim node’s
software/firmware and sends the malicious messages from the
victim ECU: SAIDuCANT cannot detect this case, and to our
knowledge, neither can any IDS that only uses timing-based
features nor any of the related work in network IDS–it remains
an open problem, in a stronger threat model. The second case
is that the attacker first launches a bus-off attack against the
victim, and then masquerades as the victim after the bus-off
is successful. SAIDuCANT currently does not consider this
case, in which the attacker modifies messages on the bus to
cause a bus-off state in the victim. For future work, we aim to
modify SAIDuCANT to detect the bus-off attack as a prelude
to the masquerade attack.

Plans for further study aim at reducing false positives, in-
vestigating other attack scenarios, and examining the recovery
strategies for the in-vehicle network after an attack happens.
We believe that the real-time model provides a solid theoretical
foundation for such investigations.

VIII. CONCLUSION

In this paper, we present SAIDuCANT as an ap-
proach for detecting intrusions in in-vehicle networks using
a specification-based IDS. The specification is developed
through observations of message timing and worst case re-
sponse time analysis of the CAN bus. We developed an
efficient and straightforward algorithm to estimate the real-
time parameters of the RTA-based model online in a black
box approach. We evaluated SAIDuCANT experimentally on
datasets from two different cars and open-source vehicle data.
The IDS can detect message injection attacks on the CAN
bus with high accuracy and low false positive rates. Com-
pared to other detection approaches, SAIDuCANT exhibits a
better F1 score compared with interval- and frequency-based
approaches while reducing detection delay. We introduced two
new metrics, TTD and FPBA, that measure the performance of
an IDS respecting classifier accuracy and timeliness, for which
SAIDuCANT yields better and consistent performance as
compared to other detection algorithms. SAIDuCANT raises at
most one false positive before an attack as opposed to interval-
and frequency-based approaches that exhibit a minimum of
65 false positives prior to an attack. SAIDuCANT can be
easily implemented on a vehicle’s gateway ECU with limited
computing power.
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