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Abstract

Modern systems are composed of many different protection do-
mains separating privilege levels, subsystems, users, clients, and
software of differing levels of assurance. System-wide memory
management must consider not only allocation to single processes,
but also efficient sharing of data across protection domains, and the
allocation of memory based on the performance of applications that
span multiple protection domains.

This paper introduces the CBUF system for the global manage-
ment of virtual and physical memory, including zero-copy shar-
ing between protection domains. We present the design and im-
plementation of both garbage collection techniques to enable effi-
cient sharing, and policies that balance memory between protection
domains specifically to satisfy system and application constraints
such as quality of service. We show that a CBUF-enabled web-
server achieves over a factor of 2.5 throughput speedup while us-
ing less processing time than Apache on Linux, and that the sys-
tem can intentionally control system throughput through intelligent
memory allocation.

Categories and Subject Descriptors D.4.2 [Storage Manage-
ment]: Allocation/deallocation strategies

Keywords zero-copy, shared memory, garbage collection, mem-
ory management

1. Introduction

Systems are increasingly focused on ensuring isolation between
different principals. From cloud systems to embedded systems,
multi-tenancy and mixed-criticality [4] systems demand that iso-
lation barriers are erected to provide system security and reli-
ability constraints. However, with increased isolation, the intra-
system data movement paths that transmit data across those pro-
tection boundaries have a significant impact on system structure
and performance. In traditional kernels such as those that imple-
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ment POSIX, these paths are mediated by APIs like read, write,
and mmap. Such APIs often either 1. include data copying, which
enables the developer to avoid reasoning about concurrency when
managing their memory, or 2. rely on the developer to explicitly lay
out and manage memory as with memory mapped files, and shared
memory. At the lower-levels, page flipping in Xen [5], inter-VM
shared memory [11], and [10] creates shared regions between user-
and kernel-level for more efficient networking.

However, many of these approaches to intra-system data move-
ment are narrowly applicable, or imply significant performance
overheads, such as copying. With traditional APIs, shared mem-
ory does not always imply zero-copy. Because of the separation
of memory management and sharing, data is often copied into the
shared region. In addition, traditional approaches do not provide
system-wide management of the sizing of different memory pools.
As data movement increases in importance, the explicit, system-
wide memory management of buffers used for data movement is es-
sential to provide both simple APIs (e.g. similar to malloc/free),
and high performance. To avoid narrow APIs that apply only to
special-cases, system-wide garbage collection abstracts away con-
currency and liveness issues inherent in moving data between asyn-
chronously interacting parts of the system.

This paper introduces CBUFs that rethink system-wide mem-
ory management by coupling three traditionally disparate system
functions: efficient page granularity allocation/deallocation, shared
memory, and management of virtual and physical memory. CBUFs
back all memory allocations in the system, including static mem-
ory such as .text, .rodata, and .data. In this way, CBUFs fill
a role similar to mmap in UNIX systems. However, one of CBUF’s
main uses is as an efficient means for sharing and moving data be-
tween separate protection domains while still maintaining isolation
guarantees. CBUFs pair shared memory with efficient allocation to
provide zero-copy inter-protection domain message passing.

Memory management facilities, such as malloc implementa-
tions or garbage collection run-times, manage a specific process’
dynamically-allocated memory on the heap. Such facilities rely on
the operating system’s page-granularity memory management API
(including mmap, madvise, and munmap) for backing memory to
the generally-sized allocations they provide. CBUFs provide a sim-
ilar API to request extents of pages, and to release them, but also
focus on the sharing of those buffers across different protection
domains, thus enabling data movement. As such, determining the
liveness of a given buffer (i.e. if references within any protection
domain exist to the buffer) is complex. Execution within a protec-
tion domain can reuse a buffer only when all other protection do-
mains are no longer referencing it. For example, domains (such as
the kernel) that must maintain references to the buffer until an I/O
device transmits the data at an uncertain point in the future. The
system-wide garbage collection of CBUFs requires a global view
of how and when each protection domain is accessing the buffer.



Conceptually, as buffers of data move throughout the system, refer-
ences to them are tracked, and global policies for garbage collection
reuse them, and rebalance them to where they are needed.

Another aspect of system memory management that CBUFs as-
sume is policies for memory management to different protection
domains. System-wide memory management algorithms such as
buddy allocators for page-granularity allocations are often paired
with quotas to allocate memory both for the kernel, and to sat-
isfy application requests made through system calls such as mmap
or sbrk. CBUFs must comparably optimize not only for efficient
allocation, garbage collection, and sharing, but also for balanc-
ing memory allocations throughout the system to maintain higher-
level goals such as throughput optimization, and Quality of Service
(QoS). In this way, such goals satisfy the functionality of being the
physical memory allocation infrastructure for the system.

Contributions and organization. CBUFs make the following con-
tributions:

• Efficient, simple message passing. Data movement throughout
the system must avoid expensive copying by using zero-copy
communications, while providing familiar APIs for memory
management. Section 2 discusses this design.

• Generic data movement design. The separation of data and con-
trol transfer paired with full-system garbage collection enable
data sharing across asynchronous flows of control. Section 3 dis-
cusses the CBUF implementation.

• System-wide memory management. The amount of memory allo-
cated to each protection domain is determined by a global CBUF

policy that can optimize for multiple metrics such as end-to-end
QoS of data transmission. This is discussed in Section 4.

• System evaluation. We provide a thorough evaluation of CBUFs
in a number of contexts in Section 5.

Sections 6 and 7 present the related work and conclusions,
respectively.

2. CBuf Design

2.1 CBuf Goals and Terminology

CBUFs unify three disparate functions in traditional systems:
shared memory for zero-copy message passing, efficient mem-
ory allocation, and system-wide physical memory allocation.
CBUF’s management of all of these concerns enables efficient
data-movement, and application performance-aware allocation of
physical memory, but leads to a number of design challenges. The
goals of the CBUF design follow.

G1 Efficient memory allocation, deallocation, and sharing. Unlike
mmap, CBUFs are allocated with a high frequency, for example,
as packets pass through the system. Thus, CBUFs must provide
overheads similar to malloc, but for memory that can span
multiple components.

G2 Simple API for zero-copy buffer sharing and reclamation. The
burden of the manual management of shared memory is as-
sumed by CBUFs, and garbage collection is used to reuse
shared buffers that are not accessed.

G3 Controlled trade-off between memory allocation, and latency
via physical memory scheduling. Large pools of memory lower
thread block-time spent waiting for memory. CBUFs control
this trade-off at run-time based on how given allocations im-
pact application execution, and how much physical memory is
available.

G4 Isolation. Though CBUFs focus on enabling efficient shared
memory, different system components must maintain isolation
to prevent fault propagation.

Terminology. CBUFs focus on system-wide memory allocation
across a set of components. We use this term to generalize pro-

tection domains that have access to different, possibly disjoint, sets
of memory. Processes in POSIX systems are components. Systems
such as COMPOSITE are designed to focus on dependability, and
isolate system-level services (e.g. scheduling, file-systems, device
drivers) as separate components. Inter-component communication
is frequent in such systems, thus emphasizing the need for efficient
data-movement.

2.2 Shared Buffer Model

A single CBUF (i.e. a single buffer) is a contiguous region of
memory, sized to be a multiple of a page that is associated with
a set of attributes. Each CBUF is named by a CBUF identifier, an
opaque, unique, global identifier. The CBUF id is integral to sharing
the buffer between components as it is used to specify which buffer
is being passed. The CBUF subsystem manages the physical frames
on the system, thus controls (though the kernel system-call API)
their mapping into component’s page-tables. This motivates the
CBUF page-granularity requirement. The Speck kernel underlying
COMPOSITE enables the CBUF manager to safely control the page-
tables of each component through a capability-based system [22].
When a CBUF is shared between components, it is mapped into
both of their page-tables. This (and especially unmapping them due
to TLB shootdown) is an expensive operation, and CBUFs attempt
to minimize it by caching CBUFs in components. This caching
of CBUFs in a component’s virtual address space is essential to
maintain efficiency and satisfy G1.

There are four types of CBUFs: 1. garbage collected buffers
that are shared between components (for G2); 2. aggregate CBUFs
which are discussed below; 3. buffers whose lifetime is controlled
by the allocating component (e.g. memory to back malloc imple-
mentations), thus don’t require full-system garbage collection (sim-
ilar to previous work on TMEM [20]); and 4. statically allocated
memory that isn’t deallocated until a component is destroyed to
back the likes of .text and .data sections. The first two types are
the focus of this paper.

Isolation and sharing are often opposed, but CBUFs wish to pro-
vide a level of isolation such that any component cannot modify
shared data while other components might be parsing and access-
ing it. To satisfy G4, CBUFs are immutable outside of the com-
ponent that originally populated them. This immutability can be
inconvenient in components such as the networking stack that need
to prepend headers onto packets, or to split up a buffer into multi-
ple packets. Aggregate CBUFs are an array of (CBUF id × offset
× length) tuples that are, themselves, stored in a CBUF. Thus, ag-
gregate CBUFs are shared consistently with normal CBUFs. Copy-
on-write can be used instead, where a new CBUF is created from
the old, with the required additions or modification. This is appro-
priate when the modifications are significant, but aggregate CBUFs
enable zero-copy for common operations like append.

2.3 Client Programming Interface

Client API Description

void *cbuf alloc(size t sz, cbuf t *cb) Allocate cbuf
void cbuf free(cbuf t cb) Deallocate the cbuf
void cbuf send(cbuf t cb) Send out the cbuf
void *cbuf2buf(cbuf t cb, size t sz) Retrieve cbuf

Table 1. Summary of main CBUF API

Table 1 lists the main operations provided by the client library
that are used directly by component code. Allocation returns both
a pointer to the buffer, and the cbuf t, the CBUF id. In addition to
allocation and deallocation, the API includes a message-like API
for sending and receiving a CBUF. cbuf send aids in tracking
liveness and is called directly before a CBUF is sent to another
component. cbuf2buf is used by a component receiving a CBUF



and it translates from the global CBUF id into a local buffer that
the component can access. These latter two operations are often
hidden from components, and instead performed by stub code that
interposes on the communication mechanism. This code is often
generated by an Interface Definition Language (IDL) Compiler.
The implementation details of this API will be discussed in section
3.

2.4 System architecture

CBuf Manager

CBuf 

Policy

Client Client metadata

ring buffer

Figure 1. CBUF system architecture

The CBUF system involves three parts: a centralized CBUF

manager component, a library that is used in client components,
and a CBUF scheduling policy component that is responsible for
deciding how much memory should be allocated to each compo-
nent. Figure 1 illustrates the system’s architecture. The CBUF man-
ager and policy components instance are responsible for managing
the CBUFs for a set of client components. For each client, the man-
ager maintains a pool of CBUFs and manages its size. The total
amount of memory requested by a client cannot exceed its pool
size, thus the manager controls system-wide memory allocations.
If the client makes a request that requires a larger pool, the client
will be blocked to either wait for a previous CBUF can be reused,
or for the policy to expand its pool. CBUF policy interacts with the
manager through a well-defined interface that is used to (1) collect
information about clients’ memory usage and how long they have
blocked waiting for memory and, (2) to adjust their pool size.

The pool of memory available for allocation is mapped into
the client, thus directly accessible even after it is freed (much like
malloc implementations delay returning memory to the OS). One
of the main difficulties in the design of CBUFs involves the ten-
sion between (1) the efficient allocation and deallocation (G1),
and (2) the manager’s management of pool sizes and garbage col-
lection (G2 and G3). For efficient allocation, IPC with the CBUF

manager must be avoided. Even if the manager were implemented
in the kernel in a monolithic system, system call overheads would
dominate allocation costs. The fast-path of memory allocation for a
client component from its pool is to use size-partitioned, lock-free
freelists. Most importantly, the high costs of mapping and unmap-
ping memory [6] must be avoided. At the same time, the manager
must be able to ascertain when each component is accessing each
CBUF, and must coordinate with each client to add and remove
those CBUFs from the client’s pool.

CBUF client and manager coordination. Figure 1 shows two
structures that are shared between each client and the CBUF man-
ager. First, a structure maintains the metadata about each of the
CBUFs in that client’s pool. This metadata is indexed by CBUF id
and includes the CBUF’s virtual address, size, and reference count
information. This structure is shared between client and manager
and enables the manager to synchronize the map and unmap of
CBUFs, with client access and reference to CBUFs. Importantly,
it enables the client to implement the API in Section 2.3 entirely
in the library with the exception of handling out of memory cases.
Second, a ring buffer is mapped between client and manager. When
the client finds that it has no free CBUFs of the requested size, it

asks the manager to perform garbage collection of CBUFs it has
previously sent to other components. The set of CBUFs that are col-
lected and can be reused are passed to the client in the ring buffer,
thus amortizing the cost of communication across many garbage
collected buffers.

CBUF garbage collection. Liveness of a CBUF is tracked based
on the API functions cbuf alloc and cbuf2buf which signify a
reference in the component that creates the CBUF, and those that
have that CBUF passed to them, respectively. cbuf free desig-
nates dropping a reference. As even low-level systems code (such
as networking stacks) uses CBUFs, we rely at the API-level on
explicit memory management. The CBUF client library tracks all
CBUFs that we know have no references to them, and uses them
to provide efficient allocations (using per-size freelists). However,
when this supply of CBUFs diminishes, the manager is asked to
perform a collection. This action has a significantly higher over-
head than the fast-path for allocation, but its cost is amortized by
the client’s CBUF pool size – the larger it is, the larger the number
of un-referenced CBUFs cached in the client. Garbage collection
requires the manager to walk through the metadata for each of the
CBUFs that belong to the client requesting collection, and deter-
mine liveness of each. Those that are not live (i.e. referenced), are
passed for reuse to the client.

Altering client pool sizes. The policy component asks the CBUF

manager to change the size of the pool for each component. The
manager can easily rebalance CBUFs from a component to another
during garbage collection. CBUFs that are found to not be live,
can be unmapped from their current components, and mapped
into the destination. However, rebalancing must also work when
clients are inactive, and don’t trigger a collection, or when all of a
component’s CBUFs are currently in use.

FBufs design comparison. FBufs [6] also provide zero-copy data
movement, but use a very different design than CBUFs. A fixed por-
tion of each component’s virtual address space is used to globally
address shared buffers. The references for these buffers are tracked
explicitly [6, 16], thus avoiding the needs for intelligent sharing and
collaboration between manager and clients, and swapping is used to
rebalance memory away from a client. Modern systems often dis-
able swapping (i.e. swapping to and from disk to virtually increase
memory size) due to the erratic behavior it can cause. Embedded
systems cannot use swapping due to their need for predictability.
In some sense, CBUFs are an update to FBufs given the needs of
modern systems that enable (1) a client fast-path that completely
avoids manager invocations, and (2) system-wide garbage collec-
tion of CBUFs, and policies around how to rebalance memory to
compensate for time spent blocked waiting for a CBUF allocation.

3. CBuf Implementation

We implement CBUFs in the COMPOSITE [17] component-based
OS. In this system, all system components including the lowest-
level policies such as scheduling, memory management (in the
CBUF manager), networking, and filesystems are implemented as
user-level components, each isolated in separate protection do-
mains. Thus, the CBUF manager and policy are implemented as
hardware-isolated, user-level components. Our prototype currently
executes on 32-bit x86. The evaluations in this paper are for a sin-
gle core. A multi-core implementation simply includes a pool per-
component, per-core. A different implementation could implement
the CBUF manager and policy in the kernel of a different OS such
as Linux. In those systems, it is straightforward to implement the
CBUF manager’s functionality in the kernel since the kernel has
full control of system resources. User-level CBUF client and policy
communicate through system calls. However, this requires either



adding new system calls or breaking existing interfaces, such as
mmap and munmap. This is an area of future work.

3.1 CBUF Client Implementation

Free List

shared

free

garbage

in use

Figure 2. shared metadata radix tree

The shared metadata structure depicted in Figure 1 is imple-
mented as a radix trie for the efficient lookup of a CBUF’s metadata
by its identifier. This radix trie is depicted in Figure 2. Each meta-
data item for each CBUF is in a single state: free in which case it
is in a freelist for CBUFs of a specific size; in use if the CBUF is
currently referenced within the component; garbage if the CBUF

is not live within this component, though it might be referenced
from another; and shared in which case it has been cbuf send to
another component (see next section).

When the CBUF manager collects all non-live CBUFs for a
component, they are transmitted back to the client, and the client
places the CBUFs back on the appropriate freelists. Our current
prototype uses power-of-two sized freelists.

3.2 CBUF Liveness

Central to the CBUF design is the capability to determine a CBUF’s
liveness across multiple client components that are sharing the
buffer. Essentially, the CBUF system must answer the key question:
“when can a CBUF memory be reused?”. CBUFs accomplish this
with a combination of three, per-CBUF, per-component counters.
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Figure 3. Examples showing a referenced, sent and receive counters for
three different CBUFs. cb 0 can be reclaimed, as no components have refer-
ence to it and sent counter’s sum and receive counter’s sum are equal. cb 1
cannot be reused because of the non-zero reference counter in component 0
and 1. cb 2 cannot be reclaimed since it has a pending send.

The CBUF system uses two mechanisms to track a CBUF’s live-
ness. Firstly, for each CBUF, each client component has its local
reference counter to indicate how many threads are currently using
this CBUF with a component. Whenever there are non-zero refer-
ence counters, the CBUF cannot be reclaimed. This reference count
is incremented on cbuf alloc and cbuf2buf, and decremented on
cbuf free.

Second, we note that due to the possibly asynchronous nature of
execution in different components, the distributed reference coun-
ters are not sufficient to track liveness. The race condition happens
when a CBUF is freed by its sender before receiver receives it. In
such a case, the reference counter of sender and receiver are each

zero, so a collection at this point would inappropriately treat the
CBUF as garbage. But the CBUF should not be collected as re-
ceiver will immediately attempt to cbuf2buf it. This race is pos-
sible because of the distributed nature of how CBUFs are tracked.
The metadata for the CBUF exists per-component so that different
clients are isolated, and so that the CBUF can be at different vir-
tual addresses in each. To avoid the race, two additional per-client,
per-CBUF counters are used: the sent and received counters. Sent
counter records how many times a CBUF is sent by this client (via
cbuf send), and receive counter tracks the number of times the
CBUF has been received (via cbuf2buf). For a specific CBUF,
when the sum of all clients’ sent counter is equal to the sum of all
clients’ receive counter, then all sends to other components have
been received. Finally, only when a CBUF has a reference counter
set to zero all in clients, and across all clients the sum of the sent
and receive counters are equal, it can be collected and reused. Fig-
ure 3 gives examples of different combinations of reference coun-
ters, sent counter and receive counter for three different CBUFs in
three different components.

3.3 Metadata structure

Byte
offset 1 2 30
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12

virtual address

identifier
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flags ref_cnt
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Figure 4. CBUF metadata layout. The virtual address is 20 bits, as
CBUFs are always page-size aligned. Control flags include the inconsistent

and relinquish bits. They occupy 5 bits, and the reference count is 7 bits.
The size, in number of pages, is 16 bits. Both sent and receive counters are
each 8 bits.

The metadata structure (in the last level of the radix trie) is de-
tailed in Figure 4. Both the client and the manager synchronize
modifications and access to this structure using atomic instructions
as using locks would compromise their fault resilience. Thus, this
layout is chosen mainly to enable synchronization around neces-
sary fields. Related fields that must be modified atomically are
packed in a single word so that atomic instructions can be lever-
aged. The first word includes the virtual address of the first page
of the CBUF, enabling cbuf2buf to properly translate between id
and address. This virtual address is set to NULL if the CBUF is not
present in the component. That word also includes flags that encode
a state-machine for the CBUF, and a reference count. The second
word holds the CBUF size (in terms of number of pages) and send
and receive counters. The last two words include a next pointer for
the freelist and the CBUF identifier (used to return the CBUF id
returned from cbuf alloc).

3.4 Synchronization and Consistency

CBUFs rely on shared metadata structures between clients and the
CBUF manager to enable client fast-paths that avoid calls (system
calls, component invocations) to the manager. However, in sharing
the metadata, synchronization is required. There are three differ-
ent classes of interactions that require synchronization. First, the
manager is invoked by many asynchronous threads, thus its access
to its own data-structures must be synchronized. Second, multiple
threads within a client component must synchronize access to the
freelists, and CBUF meta structures. Third, modifications to the
CBUF metadata must be synchronized between client and manager.
We discuss these in turn.

CBUF manager synchronization. Data-structure access within
the CBUF manager is protected by a lock. This design emphasizes



simplicity, and predictability, but would not scale on a parallel
system. See Section 3.8 for a discussion of CBUF scalability.

Client synchronization. In a component, both CBUF metadata and
the ring buffer must be synchronized. The ring buffer is a typical
wait free design, but requires single producer (manager), and single
consumer (client). To maintain the latter, a lock is used to serial-
ize client thread’s access to the ring buffer. We use the lock-free,
Treiber stacks [19] to implement free lists which uses the compare
and swap (CAS) atomic instruction to maintain stacks of CBUFs.
To deal with “ABA problem” [23], the head of each freelist is used
as an allocation/deallocation counter that is atomically incremented
along with the head of the freelist on each allocation/deallocation.
The current implementation uses double-word CAS that is avail-
able on commodity x86 processors. Should CBUFs be used on an
architecture without such support, the counter could be inlined with
the head pointer, or deferred reclamation could be used [23]. The
reference count, and other fields in each CBUF’s metadata are also
updated atomically.

Note that unlike many malloc implementations that must man-
age the transition of memory between different freelists, and to and
from a global pool, the CBUF design maintains a simple client API,
and places the intelligence of memory movement not just between
different freelists, but also between different client components into
the manager which has a global perspective on client performance.

Client/Manager synchronization. It is essential that the CBUF

manager and each of the clients it interacts with synchronize with-
out using locks. Locks would significantly impair the isolation of
the manager from client misbehavior. A client that never releases
a lock hinders progress in the manager. Thus, the manager also
uses only atomic instructions to modify the shared metadata. When
adding a CBUF into a client component, it initializes the metadata
structure (for example, adding the virtual address, CBUF identi-
fier).

When the manager wishes to shrink the pool of a client com-
ponent, it must remove one or more CBUFs from the component.
There are three cases that must be considered here:

• There are CBUFs that are both not live (as defined in Section 3.2),
and have not been collected and passed to the client. They are
garbage pending collection. This is the simplest case, as they
are not currently in use in any client. They can be unmapped,
and their metadata updated (in each component) without further
synchronization.

• A CBUF is not live, but it is present in the freelist of a client com-
ponent. To solve this, the manager sets an inconsistent flag along
with setting the CBUF’s address to NULL. This flag is monitored
during a subsequent client allocation. If it is set, the allocation
immediately unsets the flag, ignores that allocation, and immedi-
ately allocates another CBUF. To discriminate between this, and
the previous case, the manager checks if the metadata’s freelist
next pointer is NULL or not (the last item on the freelist has next
set to 1).

• When the manager wants to shrink a client’s pool of CBUFs more
than can be accomplished with the previous two techniques, it
means that there live CBUFs that we want to re-balance else-
where in the system. In this case, removing the CBUF would
likely cause faults in clients, so instead the manager wishes to
receive a notification immediately when a CBUF is no longer
live. A relinquish flag is set in all of a client’s CBUFs with non-
zero reference counts in each component. When a client calls
cbuf free, it checks for the relinquish flag if its reference count
is now zero. In such a case it invokes the manager enabling it to
eagerly re-balance the CBUF.

Synchronization between clients. We want to emphasize that
clients do not interact except to send CBUF ids between each other,

and via the send and received counts. Thus, they remain isolated
except via the shared memory of the CBUFs themselves.

3.5 CBUF Manager

In addition to the techniques for synchronization and liveness previ-
ously discussed, the manager maintains a number of CBUF-related
data-structures. The manager maintains two index tables, one is in-
dexed by component id and the other by CBUF id. For each CBUF,
a list of all components it is mapped into with references to that
component’s CBUF metadata. For each component, the manager
maintains a list of all CBUFs in the pool for this component.

When a client component attempts to allocate a CBUF, but
its freelist is empty, the client calls the manager. The manager
attempts to immediately collect memory (this is how a collection is
triggered). If no memory is available (not live), it blocks the thread
after setting the relinquish flag as in Section 3.4 to get a notification
when memory is available. When CBUFs are available for reuse,
they are placed in the shared ring buffer with the client, and the
thread is activated.

3.6 Client Library

The client library operations are intentionally designed to be sim-
ple, so that the fast-path is efficient. cbuf alloc tries to fetch a
CBUF from the freelist, while discarding inconsistent metadata. If
the freelist is empty, the manager is invoked to perform garbage
collection. Upon return, CBUFs are dequeued from the ring buffer,
and added to their corresponding freelists.

In a component receiving a CBUF from another, cbuf2buf is
called, and the CBUF id is indexed into the radix trie to get the
CBUF’s metadata. If the metadata does not exist, or the virtual
address in it is NULL, the manager is invoked to map the CBUF

and set up its metadata. Then both reference counter and receive
counter are incremented, and the virtual address is returned.
cbuf send only increments the send counter. cbuf free

decrements the reference count, and the checks the relinquish flag.
If it is set, manager is called to appropriate allocate the CBUF.

Sub-page allocations. If allocations to be shared between compo-
nents are frequently less than a page, a memory allocator can be
layered on top of CBUFs. We do this, for example, by using a slab
allocator [23] to allocate of packet headers for use with aggregate
CBUFs in a networking stack (a modified lwIP [13]). Care must be
taken in the allocator to properly reference count the CBUF (i.e. if
any memory allocation is active in the page).

3.7 CBUF Security

Although immutable sharing provides some protection, the shared
structures may expose the manager to attack via malicious modifi-
cation of the metadata. As previously discussed, we avoid locks for
synchronization between client and manager to prevent denial of
service attacks. The manager has its own copy of each CBUF’s in-
formation. Hence even if malicious clients modify important parts
of the metadata such as virtual address or size, the manager can
detect these modifications and act accordingly. These reactions are
beyond the scope of this paper.

The client may fake the sent counter and receive counter to in-
duce the manager to prematurely collect a CBUF. Clients will never
crash due to the manager removing a CBUF from their address
space as the CBUF is guaranteed to be accessible while the refer-
ence count is non-zero (reference count and CBUF are in the same
word to enable consistency of these values). Alternatively, a client
can maintain a reference to a CBUF or maintain high send counter
to prevent collection of a CBUF. This is essentially an account-
ing problem, were the manager must simply account the memory
for such CBUFs to that component after it sees it maintaining ref-
erences for longer than would be appropriate for data streaming



through the system. Lastly, a client might pass the size of the buffer
as larger than the backing CBUF supports. This is similar to a buffer
overflow. cbuf2buf takes the supposed size as an argument, and
validates that the CBUF’s memory is correspondingly sized.

3.8 Multicore Concerns

Though our evaluation of the system is based on a single-core ma-
chine, the CBUF design accommodates multi-core systems. Each
thread (or each core in COMPOSITE) has its own pool of memory
that it allocates from, and the CBUF policy re-balances not just be-
tween components, but also between cores that execute code in the
same component. The only portion of the system that would re-
quire a significant redesign to scale well on a multi-core system is
the CBUF manager. The single lock that protects all CBUF man-
ager data-structures would quickly prevent scaling. Future work
includes implementing the manager’s data-structures using wait-
free algorithms and deferred memory reclamation [23], but for this
work, we focus on system design for single-core systems.

4. CBuf Scheduling

The CBUF policy component is in charge of scheduling memory
between domains. Over time, how large should the pool of memory
be in each component? In order to flexibly support different CBUF

scheduling policies, we separate the CBUF scheduling policy from
the CBUF manager. The policy harnesses the manager’s interface
to harvest information about thread’s and component’s memory
access patterns, and to tell the manager how component memory
pools should be sized.

The policy separates predication from allocation decisions. The
policy predicts the performance given component’s CBUF pool size
of that component’s threads. It does this using metrics provided by
the manager such as the amount of time threads spent blocked wait-
ing for memory, and the frequency of garbage collection. System-
wide constraints such as limits on available memory, and compo-
nent priority or Quality of Service (QoS) are considered alongside
the predictions of behavior when making allocations. Here we con-
sider two policies that determine component CBUF pool sizes.

Minimize total blocking/GC time. This algorithm tries to reduce
the system-wide amount of time spent on CBUF garbage collection
and blocking as much as possible. In doing so, it attempts to
maximize system throughput. The policy executes periodically,
and records the memory usage in the last and current run, as
well as blocking/GC time. It decides the quota of next run based
on following cases. (1) blocking/GC time decreases because of
more CBUF, the policy continues to increase the pool size by the
same amount; (2) blocking/GC time decreases due to fewer CBUF

requests (fewer allocations), the policy keeps the pool size constant;
(3) blocking/GC time increases resulting from a pool size decrease,
the policy resets the pool size to previous value; (4) blocking/GC
time increases as a consequence of more frequent allocations, the
policy increases pool size proportionate to the increase in memory
requests.

QoS-aware. For each application, we define the QoS target as the
percentage of its total blocking/GC time over its execution time.
This is the decrease in application performance due to CBUFs. This
algorithm tries to maintain that percentage around the given QoS
level. This is done using a technique similar to binary search. The
policy maintains three average CBUF pool sizes which correspond
to larger, smaller, and equal to the desired QoS value. In the current
period, if the blocking/GC time percentage is not close to the target
value, the policy uses the average of current amount and the average
value in the opposite side as the new quota.

Using the above two prediction algorithms, we implement
and evaluate four policies under different system constraints.

(1) Maximize system-wide throughput, sufficient memory
– using the minimize total blocking/GC time algorithm, where
all allocations can be satisfied as there are enough memory.
(2) Maximize system-wide throughput, limited memory
– Using minimize total blocking/GC time where the total pre-
diction amount exceeds the memory limit, each component re-
ceives a decreased pool size proportional to their designed alloca-
tion. (3) Priority based policy, limited memory – Using
the minimize total blocking/GC time policy, allocations are satis-
fied first for higher-priority applications, and, if memory remains,
lower-priority applications then get their pool satisfied. (4) QoS
policy, limited memory – it uses the QoS allocation algorithm
and satisfies all applications with QoS guarantees first.

5. Experimental Evaluation

All experiments in this section are run on a 2.9 Ghz Intel Core
i7-3520M processor with 1GB of memory. All Linux experiments
use 32-bit Ubuntu 14.04 with a Linux kernel 3.19.0. We boot and
execute COMPOSITE using the Hijack technique [21]. The goals of
our evaluation include:

• Measure the efficiency of the CBUF implementation, comparing
with existing techniques.

• Assess the cost of communication using CBUFs in both micro-
benchmarks and real applications.

• Understand to what extent memory consumption impacts mem-
ory operation overheads.

• Illustrate the ability of CBUF to support flexible memory schedul-
ing policies and evaluate those policies to see if they can achieve
their specific trade-offs.

5.1 Micro benchmarks

Here we conduct a set of micro benchmarks to evaluate the over-
head of the client API and compare it with similar techniques in
Linux. All operations are executed 100,000 times, and we report
the average results.

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 1  4  16  64  256  1024

C
o
s
t 

(C
y
c
le

s
)

Number of pages requested

Memory Allocation Overhead

Cbuf
glibc-malloc

tcmalloc
jemalloc

streamflow
mmap

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1  4  16  64  256  1024

Number of pages requested

Memory Deallocation Overhead

Figure 5. Memory allocation/deallocation cost.

Component-local CBUF operations. To apply CBUFs to real-
world applications, we need to first understand the underlying costs
of basic CBUF operations, especially the fast-path, client opera-
tions. We first compare CBUF memory allocation and dealloca-
tion performance with some modern allocators. We chose the mal-
loc implementation from glibc-2.19, TCmalloc within gperftools-
2.4, jemalloc-4.0.4, and streamflow (git-8ac345c). Though CBUFs
have very different goals from those allocators, they all use com-
mon techniques to enable fast memory allocation/deallocation us-
ing thread- or core-local caches. We wish to compare the costs of
the CBUF fast-path to assess whether or not the overheads could



Operation Avg cost (cycles)

Cached cbuf alloc 58

cbuf free 27

cbuf send 41

Cached cbuf2buf 68

Table 2. Basic CBUF Operations

inhibit CBUF use. We also include the cost of mmap and mun-
map as a comparison since CBUFs perform similar functions in our
system. Figure 5 shows the comparison. For allocation of a small
number of pages, excluding streamflow, all those allocators have
very low and constant cost. Taking one page allocation for exam-
ple, CBUF is 58 cycles, glibc is 76 cycles, tcmalloc is 23 cycles,
jemalloc is 36 cycles, streamflow is 222 cycles and mmap is 912
cycles. As the number of pages allocated increases, CBUF over-
heads remain constant due to the uniform allocation methodology
across sizes. By contract, general-purpose allocators allocate dif-
ferent size-classes using different technqiues (e.g. using best-fit al-
locators, or directly using mmap). The results show that the cached
allocation costs of the CBUF operations should not inhibit the use
of CBUFs. The impact of garbage collection on allocation will be
discussed shortly.

Table 2 shows the overhead of all client-side CBUF operations.
Memory size is set to one page for all operations, and we avoid
garbage collection.
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Figure 6. Round-trip message passing performance

Message passing performance. We simulate the pipe-based IPC
test in the LMBench test suite using CBUFs in COMPOSITE and
compare its performance with Linux pipes. In COMPOSITE, two
components communicate with each other by both sending and re-
ceiving CBUFs. Similarly, in Linux pipes are used to send and re-
ceive message between two processes. Figure 6 reports the average
round-trip cost with various message size. Communication for a
single page is more efficient in COMPOSITE than in Linux (around
1278 vs. 26,554 cycles), so the base-line for each system is differ-
ent. However, as the number of pages sent increases, CBUFs incur
much less overhead than Linux pipes due to zero-copy data move-
ment.

CBUF allocation cost vs. pool size. Figure 7 shows the impact on
allocation cost of a component’s pool size, and of the number of
components that the CBUF is shared with. All allocations allocate
one page of memory, and when there is no available memory in
local cache, garbage collection is invoked. Thus the cost of alloca-
tion also includes garbage collection’s overhead. The figure shows
that the larger the pool size, the less frequently collections happen,
and the more CBUFs are collected. This demonstrates the trade-off
between processing time, and memory pool size. Allocation costs
decrease to 253 cycles. This motivates high-level policies that can
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explicitly control this trade-off to meet performance goals, and best
commit memory to component’s pools.

5.2 Image stitching application

To evaluate the use of CBUF in existing applications to understand
how we can increase isolation by using CBUFs along with separat-
ing the application into multiple components, we use image stitch-
ing. Image stitching is a process which combines multiple images
with overlapping regions to generate a segmented panorama. Im-
age stitching is widely used in camera or video applications, such
as object insertion, panorama creation and video stabilization. Im-
age stitching includes multiple stages that form a typical pipeline
structure. Figure 8 illustrates the stitching pipeline.

Input Images Match Features

Estimate camera

parameters
Blend Images Warp Images

Find Features

Figure 8. Image Stitching Pipeline

We use the sample image stitching application in the popu-
lar open source computer vision library – OpenCV [15]. Since
OpenCV is a huge project consisting of many image processing
modules, we only port those modules used by image stitching to
COMPOSITE. We break the image stitching into multiple stages
based on its pipeline showed in Figure 8, and implement each stage
in a separate component. Most data passed between those stages
are matrices. Thus we add a new matrix alloctor in OpenCV, which
uses CBUFs to hold matrix data. When multiple images or matri-
ces are transferred, they are assembled into a single aggregate. We
compare the total completion time of image stitching in COMPOS-
ITE with Linux. In Linux, it takes 385.52ms to complete, and in
COMPOSITE it needs 389.63ms.

Discussion. Thanks to the simplicity of the CBUF interface, we
found it is convenient and straightforward to apply CBUFs to this
legacy application. During our porting process, no modifications
are needed to the application’s code, and we only add marshalling
and unmarshalling functions for transferring objects between com-
ponents. Because of zero-copy, CBUFs incur negligible overhead,
and at the same time we gain significant increases in isolation.

5.3 Networking application

In this section, we investigate the benefit of CBUF’s zero-copy
data movement, and the effectiveness of various CBUF schedul-
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Figure 10. Web server throughput and interference thread blocking/GC time with different policies
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Figure 11. Web server throughput and interference thread blocking/GC time with different QoS target
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Figure 9. Web-server throughput comparison

ing policies using a custom HTTP server. We integrate CBUF to a
web server which uses a separate FastCGI [8] component to han-
dle HTTP requests. The webserver implemented in COMPOSITE

is composed of more than 20 components, and each packet tra-
verses through six components. CBUFs underlie all data movement
through the system. We modified lwip-1.4.1 [13] to use CBUFs for
both packet data and header. The header of each protocol layer and
the HTTP payload are organized as an aggregate CBUF. The client
and server machines are connected directly via ethernet cable.

Web server performance. We first compare our web server’s
throughput to an Apache web server with FastCGI, and vary HTTP

payload size. We use an Apache 2.4.7 server with the FastCGI
2.4.7 module and the FastCGI developers toolkit 1.23. We disable
logging, and ensure that superfluous modules aren’t installed. The
goal of these tests is to determine if CBUFs can provide practical
throughput, and to validate that for increasing payload sizes, the
system benefits from CBUF’s zero-copy. We measure the perfor-
mance of each system using the Apache benchmark program (ab)
to send 100,000 HTTP requests for each payload size. Through
trail-and-error, we found 22 concurrent connections maximizes
throughput for both COMPOSITE and Apache.

Discussion. Figure 9 reports both transfer rate and cpu utilization.
Transfer rate of COMPOSITE is consistently higher than Apache
until the network is saturated. Even after the network is saturated,
Apache still has higher cpu utilization than COMPOSITE implying
that for a higher capacity network, COMPOSITE could continue to
increase in throughput. However, we haven’t identified why COM-
POSITE fails to achieve 100% cpu utilization before network is sat-
urated. This implies that the throughput should be higher for all
but the lowest packet sizes. The most likely reason is that lwIP,
which is not focused on high performance, does not aggressively
enough saturate the network (i.e. the TCP window isn’t aggres-
sively enough increased).

CBUF scheduling in an open system. We evaluate all policies
listed in section 4 with a web server, and an application that pro-
vides memory contention. The web server runs 65 seconds and
replies to HTTP request with 1KB payloads, dynamically gener-
ated by a CGI component. At 21 seconds, the interference thread
begins to execute periodically every 10ms, and at 45 seconds, it
completes execution. In each period, the interference does 100,000



CBUF allocations and deallcations in total and thus it contends for
CBUFs with the web server. On our machine, those operations take
around 10% cpu time. The minimal memory requirement for those
allocations varies over the time. It starts from 5 pages at 21 sec-
onds, and increases to its peak value 64 pages at 31 seconds, then
it keeps this value for 10 seconds, and after that it goes back to 10
pages. This gradually increases memory pressure, then decreases it.
All policies are implemented as a periodic thread and run 4 times
per second. They manage all web server component’s memory plus
the interference component thread.

Discussion. Figure 10 plots the web server’s throughput and block-
ing/garbage collection time the interference spends on CBUF with
different CBUF scheduling policies. In the first figure, we evalu-
ate the policy that attempts to maximize system-wide throughput.
The case where system has surplus memory serves as as a baseline.
When the interference thread arrives, the web server’s throughput
drops about 10% due to the reduction of its cpu time. But in the
first 4 seconds of interference’s execution, the throughput decreases
more than 10%. This is because the interference thread needs to
create lots of new CBUF which takes more cpu resource. From 25
seconds to 30 seconds, the interference’s memory requirement ex-
ceeds its CBUF pool size and it has to wait for the policy thread
to expand its CBUF pool, therefore the web server gets more time
to run and we get higher throughput. After 30 seconds, both web
server and interference thread have sufficient memory and they all
execute with optimal performance. And the total CBUF usage is
340 pages in this case.

However, for other policies the total CBUF usage is limited to
300 pages at most, and this amount cannot support both a web
server and an interference thread to run at their highest perfor-
mance. Hence this limit causes memory contention and compli-
cates the memory scheduling. From figure 10, we can see un-
der the memory constraint, the maximized system-wide through-
put policy achieves similar system performance with the enough-
memory case before 30 seconds. But after that, the web server’s
throughput has an additional 15% decrease, and the blocking/GC
time of interference thread increases a bit. What is worse, there
are some performance jitters in both web server and interference
thread. This is because, after 30 seconds, the interference thread’s
memory requirement reaches its maximal value, and expanding its
CBUF pool can significantly reduce system’s total blocking time
and improve whole system’s performance as a consequence. So the
policy moves much memory from web serve to the interference
thread and degrades web server’s throughput. However, if the web
server’s throughput degradation is too large, giving memory to web
server has more benefit and some CBUFs are returned to the web
server. This memory movement between web server and interfer-
ence thread is the source of the inconsistent performance.

The results for the priority-based policy is relatively straightfor-
ward. We set all components belonging to the web server to a higher
priority than the interference thread. So the web server’s memory
demand is satisfied first and the rest of available memory is left to
the interference thread. After 25 seconds, the interference thread
cannot get enough memory and is blocked waiting for available
CBUF. The last one is QoS policy for web server whose QoS tar-
get is 25%. With such a high blocking/GC time, the web server’s
throughput indeed decrease significantly, but not down to the worst
case throughput for the max throughput policy. Additionally, its
performance is more consistent, while the interference thread also
gets adequate memory to finish.

To more closely investigate the QoS policy, we run it with differ-
ent web server QoS targets. This result is shown in Figure 11. We
can see our QoS policy succeeds in maintaining predictable per-
formance for all QoS targets. This demonstrates the web server’s
end-to-end latency can be precisely managed by an external CBUF

scheduling policy. There are some other interesting observations.
For the 10% QoS target, the throughput after 29 seconds is worse
than before interference arrives. The reason is that some memory
is allocated to the interference thread, and the policy doesn’t re-
balance them back to the web server when the interference thread
is blocked. Comparing the 1% QoS target with the priority based
policy, we found the interference thread can run longer. This illus-
trates the maximum throughput policy is more aggressive and it
offers more CBUF memory to the web server than the QoS pol-
icy. In our experience, appropriate QoS targets can be derived from
empirical investigation.

6. Related Work

Efficient memory allocators. Some similar techniques are used by
both CBUFs and modern scalable memory allocators [7, 9, 18]. For
instance, all of these employ hierarchical allocation with thread-
local memory caches, and then from within a global allocation pool
(within the process). Similar to CBUFs, local free lists are segre-
gated by different size classes enabling fast allocation. However
there is fundamental difference between CBUFs and those works.

• While those allocators aim for general purpose memory alloca-
tion, CBUFs are designed for efficient shared memory manage-
ment among different protection domains, and are used as a back-
end for those allocators.

• CBUF liveness tracking is more complicated, as even after a cbuf
is deallocated by one component, it can still be accessed by other
components. Traditional allocators do not need to deal with such
a problem as after a thread frees an object, other threads are not
expected to use it any more.

• Most of the design of CBUFs is motivated by the need for a sep-
aration between the CBUF manager that makes memory alloca-
tions into component pools. Allocation from the pools within a
client component must be efficient, yet the manager must be able
to asynchronously re-balance memory between pools in response
to measured application efficiency.

System shared memory. In Unix-like systems, shared memory can
be created by using shm open or the mmap API. These shared re-
gions require that either memory be allocated inline in the shared
memory region, and that it be copied into it. Shared memory does
not provide a message passing API, so the programmer (or a li-
brary) must build one up. Zero-copy sharing along a pipeline (like
the image processing application in Section 5) means comparable
coordination among many processes. Doing so often makes differ-
ent processes co-dependent as they rely on the proper management
of the shared region. CBUFs perform this shared region manage-
ment, and enable a message passing API, with central management
of memory for the entire system.

In capability-based microkernel systems [12, 14], shared mem-
ory is built via capability transfer. This is the same lowest level
mechanism used in COMPOSITE to create shared memory. How-
ever, in those systems, a fixed amount of data can also be copied
during IPC. COMPOSITE takes a different approach. It separates
data transfer from control transfer. All IPC parameters are passed
in hardware registers and additional data is transferred via CBUF.
This separation simplifies the design of the kernel and reduces the
cost of IPC [22].

High-performance I/O. The design of CBUFs has been inspired
by previous research [3, 6, 10, 16] that focuses on optimizing
I/O performance. For example, Fbufs inspired the zero-copy data
movement and aggregate buffers with immutable contents. But
most of them deal with communication between kernel and user
space, CBUF is more general as it can be used between any user
level components. Furthermore, none of them have the ability
to control trade-off between latency and memory consumption.



Cosh [2] provides inter-process sharing on heterogeneous cores.
This can also be supported by CBUF, because the manager can
decide to share the memory or copy the data according to the un-
derlying hardware architecture.

Resource containers. Linux cgroups are an implementation of re-
source containers [1] and are aimed at limiting, accounting for, and
isolating resource usage for a set of processes. cgroups use quotas
to provide memory isolation between different groups. Though fo-
cused on memory, the CBUF management policy goes beyond quo-
tas, and provides allocations that change over time in reaction to
measured overheads, and system-wide goals (i.e. co-management
of CPU and memory).

7. Conclusions

This paper presents CBUFs that rethink system-wide memory man-
agement by coupling three traditionally disparate system functions:
efficient allocation/deallocation, shared memory, and management
of virtual and physical memory. CBUFs use full-system garbage
collection and policies for managing memory re-balancing in op-
timization of global system goals. We show that the design effec-
tively trades memory (in pools for components) for efficiency, and
that global policies manage this trade-off using a variety of metrics
including system-wide throughput, and quality-of-service. We also
show the effectiveness of zero-copy data-movement throughout
the system using garbage-collected CBUFs. We show that existing
legacy software (an image processing application, and a network-
ing stack) can be adapted to use the CBUF API. A CBUF-enabled
webserver, leveraging zero-copy communication between 6 com-
ponents on the data-path, achieves over a factor of 2.5 through-
put speedup while using less processing time than an existing web-
server on Linux despite the increased isolation in an implementa-
tion that uses many protection domains.
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