
SuperGlue: IDL-Based, System-Level Fault Tolerance for Embedded Systems

Jiguo Song∗, Gedare Bloom†, Gabriel Parmer∗
∗The George Washington University
{jiguos, gparmer}@gwu.edu
†Howard University

gedare.bloom@howard.edu

Abstract—As the processor feature sizes shrink, mitigating
faults in low level system services has become a critical aspect of
dependable system design. In this paper we introduce SuperGlue,
an interface description language (IDL) and compiler for recov-
ery from transient faults in a component-based operating system.
SuperGlue generates code for interface-driven recovery that uses
commodity hardware isolation, micro-rebooting, and interface-
directed fault recovery to provide predictable and efficient
recovery from faults that impact low-level system services.

SuperGlue decreases the amount of recovery code system
designers need to implement by an order of magnitude,
and replaces it with declarative specifications. We evaluate
SuperGlue with a fault injection campaign in low-level system
components (e.g., memory mapping manager and scheduler).
Additionally, we evaluate the performance of SuperGlue in a
web-server application. Results show that SuperGlue improves
system reliability with only a small performance degradation of
11.84%.

I. INTRODUCTION

Recent advances in silicon technology enable processors
with billions of on-chip transistors, however these advances in-
creasingly cause processors to be susceptible to transient faults
such as single event upsets (SEUs) or other soft errors. The
risk of a soft error induced system failure has become more
prominent and of great concern in systems that require high
dependability such as safety-critical embedded systems. Fault
tolerance and recovery from transient faults in such embedded
systems historically uses triple modular redundancy (TMR),
but the cost of TMR in terms of size, weight, and power
(SWaP) is large due to software and hardware replication.
The challenge for an embedded system is to minimize SWaP
while maximizing fault tolerance.

Efficient fault tolerance approaches aim to protect and
recover specific modules of a system, such as the device
drivers [1] or application modules [2], [3], [4]. These ap-
proaches are problematic as a fault in an unprotected module
can bring down the system. Consider a fault that crashes a
thread scheduler, which would invalidate fault tolerance mech-
anisms operating at an application or user level. Nearly 65% of
hardware errors corrupt operating system (OS) state [5] before
detection. Once OS state is corrupted, the fault can propagate
to any part of physical memory and affect user-level software.
OS architecture plays an important role in system reliability.
Microkernels, for example, improve system reliability by

This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675 and ONR Award No. N00014-
14-1-0386. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or ONR.

decomposing system services into partitioned modules, or
components, with well-defined, isolated boundaries between
them. These components do not interfere with each other in
unpredictable ways, and this isolation naturally enhances fault
tolerance by preventing blanket access to all of memory and
limiting fault propagation: faults can propagate between two
components only through the data shared over the interface
between them [6]. Isolation helps to limit the impact of faults
by constraining the effects of system-level faults, yet it is not
sufficient for fault tolerance. For example, a failed scheduler
cannot simply be rebooted with the expectation the resultant
system behaves correctly.

Prior work on the Computational Crash-Cart, or C3 [7],
leverages fine-grained isolation between system components
to enable interface-driven recovery of a failed system com-
ponent by leveraging logic within the interface stub code
between communicating components. Stub code encodes and
translates state about the components and uses component
interface functions to rebuild and recover the state of a
failed system component such as a scheduler. Interface-driven
recovery avoids the overheads of check-pointing and repli-
cation, thus lowering SWaP. Of note for real-time embedded
systems, the C3 interface-driven recovery is predictable and
has a demonstrated schedulability analysis for hard real-time
systems. Unfortunately, C3 uses recovery mechanisms in an
ad-hoc manner, and the hand-written stub code that interposes
on invocations between components is complex and error-
prone.

In this paper we introduce SuperGlue, which is a model
for interface-driven recovery and a declarative specification
of component behavior implemented as an interface defini-
tion language (IDL). SuperGlue aims to provide predictable
recovery from the failure of low-level system services without
extensive changes to those services’ code. Instead, SuperGlue
utilizes an IDL specification of each service’s interface and
then tracks how a service uses resource descriptors and
resources with a state machine. The net result for SuperGlue
is a system with predictable, efficient recovery from system
faults using an order of magnitude fewer lines of recovery
code, that is written in a declarative manner, compared to a
system using error-prone, hand-written recovery code.

The contributions in this work include:

• a model for inter-component interactions and component
semantics that differentiates between necessary recovery
mechanisms;

• a compiler that synthesizes interface-driven recovery code

...

..

system-level

scheduler

lock

client

server

file system

application-level

mem
mgr server's

depended-on

(a) COMPOSITE (b) C3

Fig. 1: (a) A set of hardware-isolated components in COM-
POSITE (b) Interface-driven recovery with C3 for a system-
level components. Dotted rectangle is an interface stub, small
bold black squares in the stub represent recovery metadata,
and squiggly vertical lines are threads.

based on an IDL specification;
• and an evaluation of SuperGlue overhead and fault toler-

ance in a component-based operating system subjected to
fault injection in system-level components.

Experimental results show that SuperGlue can produce a de-
pendable OS for embedded systems with minor performance
degradation compared to a similar system without fault toler-
ance. We demonstrate our approach using COMPOSITE [8],
an existing component-based OS that supports predictable
real-time embedded systems, and C3, which provides fault
recovery mechanisms for COMPOSITE.

II. BACKGROUND: COMPOSITE AND C3

SuperGlue uses C3 mechanisms implemented in the COM-
POSITE µ-kernel. This section briefly introduces these systems
after explaining our fault model.

A. Fault Model

We assume transient faults that affect processor pipelines
and registers with a fail-stop model. Thus, faults are detected
immediately after corrupting system state. Past work in fault
characterization finds that 65% [1], 80.6% [9], and 93% [10]
of injected faults with detectable failures result in fail-stop
behavior. Our own results confirm these numbers. Given
the pressure on decreasing chip processes sizes, we focus
on transient faults impacting the chip’s pipeline and on-
chip structures [11], rather than persistent memory corruption
where ECC can prevent most faults [12].

B. COMPOSITE Component-based OS

COMPOSITE is an open-source OS that consists of a small
kernel [13] (less than 7000 lines of code) and a collection
of user-level components that implement the bulk of system-
level services such as scheduling, memory management, time
management, and synchronization. Components have well-
defined interfaces consisting of sets of function calls pro-
vided by the server component to a client component that

invokes them. Invoking a function in a component’s interface
triggers a component invocation–COMPOSITE’s inter-process
communication primitive–that is mediated by capability-based
access control in the kernel [13]. COMPOSITE focuses on
the fine-grained decomposition of system functionality into
separate, isolated components. For example, a componentized
web-server consists of over 20 separate components [8].

Unlike most modern µ-kernels, COMPOSITE uses syn-
chronous thread migration [14], [15] instead of synchronous
rendezvous between threads as in L4 variants [16]. Compo-
nents are active when a thread invokes them or if they request
the creation of a thread. They are also concurrent in that
multiple threads can be runnable within a component at a
time. Figure 1(a) depicts a set of application- and system-level
components, shown in black bold rectangles, with threads
(squiggly lines) executing in some components. The difference
between system-level and application-level components is
that system components manage (hardware) resources, often
provided as a service to many clients. Hardware (page-table)
protection mechanisms isolate each component’s memory and
prevent sharing data structures or passing addresses directly.

C. C3 Interface-Driven Recovery

C3 is a fault tolerance infrastructure built on top of COM-
POSITE that makes use of the fine-grained isolation between
components. Such isolation naturally provides a base-level of
fault tolerance by constraining the scope of fault propagation:
Barbosa et al. [6] reported a decrease in fault propagation
for µC/OS-II from about 60%–70% down to only 22% of
transient faults by making each process’s address space private
and hardware-protected. C3 leverages the low incidence of
fault propagation between components (no propagation was
observed in experiments) to enable non-faulty components to
aid in the recovery of a failed system-level component.

Interface-driven recovery in C3 begins by µ-rebooting the
failed component using a “booter” component to re-initialize
the faulty component at the cost of memcpy. This reboot places
the component into a safe (fault-free) state. Then the state
of the component is made consistent with what its clients
and servers expect by referring to a summary of component
invocations prior to the crash. Each thread that was executing
within a faulty component diverts back to the invoking client
and executes stub code in the interface that recreates the
server’s state. Figure 1(b) depicts the process of interface-
driven recovery. Descriptor state, in small bold black squares,
is tracked on the client-side (dotted rectangle) of a component
invocation. A fault in a component causes recovery of its
clients by micro-rebooting the faulty component, resetting
it to an initial state, and rebuilding server state using the
descriptor tracking information stored in the client. When the
failed server depends on another component, it must, in some
cases, recover descriptors it had before failure. In such cases, a
component can reflect on its depended-on servers to explicitly
request the state of descriptors from each of those servers.

As an example of interface-driven recovery, consider a fault
in a component that provides locks for mutual exclusion.
When the component is µ-rebooted, multiple clients might
have already created multiple locks. Furthermore, threads

might have acquired or be contending locks. The recovered
component’s internal state must be made consistent with the
expectations of other components. Thus, the client’s stub code
in this example will regenerate the component’s state by
recreating, acquiring, or contending locks.

C3 stub code executes at user-level in the client and server.
This code tracks the state of each object acted on by the
functions in the interface – e.g., locks in the previous example,
file descriptors for a file system (FS), or page virtual addresses
for a memory mapping manager. With SuperGlue we call
these objects descriptors. The straight-forward way to track
the modifications made to the descriptors (e.g., lock taken,
lock contended, file offset advanced) maintains a log of oper-
ations. However, as C3 targets embedded systems, unbounded
memory consumption for the log is unacceptable. Instead, C3

encodes the state of a descriptor with a state machine that
contains a bounded amount of data. This data is derived from
the arguments and return values of each interface function and
is specific to the interface. For example, the path in the FS
namespace is tracked for an open file descriptor, along with
the offset of the descriptor into the file, which is updated
based on the return values from read and write. Recreating
a descriptor is equivalent to transiting a path through the
state machine that brings the descriptor into the expected
state (e.g., an acquired lock) and sets the descriptor’s data
to consistent values (e.g., open and lseek). A client restores
a faulty server’s state associated with a descriptor by making
component invocations from the stub code, as above. A faulty
client restores its descriptors by reflecting on the server.

Interface-driven recovery is insufficient for some compo-
nents. For example, for an in memory FS (RamFS) to recover
the data within a file, the state machine technique would
need to be augmented with the data in the file. Instead such
components include invocations within the RamFS component
to a third storage component that stores an association includ-
ing < id, offset, length, ∗data > where id is an identifier to
uniquely identify the file (e.g., a hash on its path), and offset,
length, and ∗data track a slice of the file. When the RamFS
is recovering and receives client invocations to recreate file
state, it manually invokes the storage component to retrieve
the file contents. In RamFS, the file information is shared
using a zero-copy buffer mapping subsystem [17] in which
all but the producing component (client) has read-only access
to the buffer. This access restriction prevents fault propagation
through the buffer. This buffer is what the storage component
maintains for the RamFS server (as data).

C3 recovery may be conducted either on-demand, or ea-
gerly. Eager recovery iterates through all descriptors in a
client interface to recover the entire state of a component
for each of its clients immediately. In contrast, on-demand
recovery delays recovery of a descriptor until it is accessed by
a thread. Thus, each descriptor is recovered lazily. Importantly,
this means that the descriptor is recovered at the priority of
the thread accessing the descriptor, which has the effect of
lessening the amount of interference due to priority inversion
that recovery has on high-priority processes. On-demand has
the effect of properly prioritizing the recovery process, which

has a significant impact on system schedulability [7].

D. Example: Recovering the Memory Manager
The memory manager (MM) component in COMPOSITE

provides and maintains virtual-to-physical memory mappings
and provides an API close to that of the recursive address
space model [16]. A thread invokes mman get page to
request access to a page and creates the root mapping between
that virtual page and some physical frame. Memory is shared
between components with mman alias page, which creates
a child mapping from a parent in a tree rooted with the
physical frame. mman release page revokes a mapping
and the subtree rooted at it (all transitive aliases). The MM
descriptors are the virtual addresses in the component in which
they are mapped.

The state of a mapping can be described by its virtual
address and client component, and this state is tracked on
the interface between the MM and the client that created the
mapping. If a fault occurs in the MM, the mapping trees
may be corrupted. µ-rebooting resets all trees. Eager recovery
rebuilds all of the root mappings. On-demand recovery occurs
when a thread makes a component invocation to the MM.
A mapping can only be recovered after its aliased-from
parent mapping is recovered. However, since memory can
be shared between different components (two virtual pages
may refer to the same physical frame), upcalls are made into
client components in order to rebuild correct state between
dependent mappings. This process is transparent to client
execution and happens on-demand.

E. Assumptions and Scope of This Work
C3, and comparably SuperGlue, do not protect several

classes of system software. These include applications, the
kernel itself, and the zero-copy shared buffer management
component. Significant previous work has been done on
embedded system application reliability, including that on
checkpointing, recovery blocks, and redundant computation.
SuperGlue does not target application-level faults. Instead, it
focuses on system-level components (e.g., schedulers and file-
systems) whose failure impacts the rest of the system that
depends on them and is complementary to application-level
fault tolerance techniques. The COMPOSITE kernel itself is
small with little state (mainly just page tables, capability
tables, and threads) and optimized to not consume much
execution time. On our hardware (detailed in Section V),
all kernel execution paths are bounded (for predictability),
non-preemptible, and short (the longest taking around 1/2 µ-
second). Unless occurring at an extremely high frequency, a
pipeline fault is unlikely to impact the kernel.

If faults in the kernel and the shared buffer component
prohibit system reliability, other techniques such as compiler-
based redundant operation or memory encodings can be used.
In such a case, C3 and SuperGlue still provide protection to
the rest of the system components, that do not need to suffer
the overheads from such encodings.

F. C3 recovery mechanisms: summary and limitations.
COMPOSITE provides hardware-based isolation between

components, and system-level recovery with C3. Although

C3 uses interface-driven recovery, the procedures for recov-
ering different kinds of components do vary. On one hand,
Song et al. [7] gave an example for recovering the thread
scheduler that requires reflecting on kernel data structures.
On the other hand, recovering the MM component requires
upcalls into client components, in addition to reflecting on
the component-kernel interface. Indeed, C3 offers no guidance
to system developers in how to apply the interface-driven
recovery mechanisms, nor is it clear when recovery should use
reflection, upcalls, be done on-demand or eagerly, or if any
ordering must be imposed on descriptor recovery. Importantly,
C3 stubs are manually written, and are complex and error
prone. Some interface stubs are more than 398 (e.g., the
file system component stubs) lines of code (LOC), while the
components that implement those interfaces are often around
500 LOC.
The need for SuperGlue. These limitations motivate
SuperGlue which (1) creates a model that abstracts the system
recovery mechanisms and properties of C3 into an interface
that (2) is integrated into an IDL supporting terse, declarative
interface descriptions to automatically generate recovery code.

III. SUPERGLUE SYSTEM MODEL

SuperGlue defines a model of interface and component
semantics to better use the mechanisms of C3. This model ad-
dresses the following questions about how to use C3 (1) what
is the shape of the state machine, and what is the recovery
path through it? (2) what should client stub code do when it is
activated by an inter-component exception? (3) when should
upcalls be used to trigger stubs, and into which components?
(4) when is reflection needed to recover descriptor state from
a server? (5) and when must the storage component and
zero-copy buffer be used, and what are the means to access
storage component services? In this section we present a
system model with the specifications for the resources and
components that manage these resources, and the descriptors
and the component interfaces that manipulate descriptors’
states. We then build a set of rules for recovering a given faulty
component based on the dependency relationships of that
component. These specifications and rules enable interface-
driven fault recovery for system-level services in a principled
way that both addresses the questions outlined above and
enables IDL compilation to produce interface-driven recovery
code.

A. Descriptor-Resource Model

Operating systems provide high-level abstractions to hard-
ware resources to their clients. These abstractions are often
named using an opaque descriptor (e.g., a file descriptor).
Whereas in C3 the concepts of a resource and descriptor were
conflated as “object”, SuperGlue decouples and distinguishes
between them. Interfaces are parameterized using the follow-
ing terminology:

• r is a specific type of resource. Most system resources are
abstract, and provided by a component’s implementation
of an interface. These include threads, memory mappings,
locks, and event channels.

• C = {cr, ...} is the system’s set of components. cr is the
component that manages resources of type r (for presenta-
tion, we simplify such that each component manages only
a single type of resource).

• dr is a class of descriptors used by client(s) which is
associated with a resource r through cr’s interface.

• Br is true if and only if a thread can block while accessing
r in component cr. Recall that COMPOSITE invocations are
synchronous, so blocking also delays execution in the client
when a thread blocks in the server.

• Dr is meta-data associated with the resource r.

• Gdr
is true if and only if a specific descriptor is globally

addressable between components. Otherwise, each descrip-
tor is locally addressable only from within each client
component.

• Pdr ∈ {Parent,XCParent, Solo}, describes if descrip-
tors of type dr can have dependencies on each other.
Parent expresses that when a dependency is created, the
creation function takes another descriptor as an argument.
Thus, upon fault and recover, the same parent must be
passed in as an argument. The accept POSIX function
is an example of this where new descriptors are created
from existing ones. XCParent states that the parent/child
relationship can span components. Solo denotes that no
inter-descriptor dependencies exist.

• Cdr is true if and only if Pdr 6= Solo, and when a descriptor
is closed, its entire tree of children is also deleted. This
behavior is common in modern capability systems that
support recursive revocation [18].

• Ddr
is meta-data necessary for recovery that is associated

with descriptors of type dr. For example, for files, this
includes the offset and file path.

• Ydr
is true if and only if Pdr

6= Solo ∧ ¬Cdr
, and when a

descriptor is closed, the stub’s data tracking the descriptor
is also deleted. Otherwise, the descriptor meta-data remains
and can used by the children.

All of these variables are composed into the descriptor-
resource model,

DR = (Br, Dr, Gdr
, Pdr

, Cdr
, Ydr

, Ddr
) (1)

B. Descriptor State Machines

Integral in the recovery of server components is the state
machine that is implicit in how descriptors are manipulated
by interface functions. SuperGlue makes these state machines
explicit. The motivation is two-fold. First, formalizing valid
transitions enables fault detection if invalid branches are
attempted. Second, the state machine is used to track each
descriptor’s state, thus succinctly summarizing the “current”
state of a descriptor (along with Ddr

) without logging all
interface operations. A state machine that describes the state
of descriptor dr includes:

SMdr
= (Idr

, Sdr
, σ, s0, sf) (2)

where

• Idr = {fi, ...} is the set of functions in the interface
exported by cr.

• Sdr
= {si, ...} is the set of states of the descriptor. As we

will see, these are implicit and inferred by the compiler.
• σ : Sdr

× Idr
→ Sdr

is the state transition function. Given
an input state, and an interface function, σ determines the
next state.

• s0 ∈ Sdr is the initial state of a descriptor when created.
• sf is a special type of state: the faulty state. There are

implicit transitions to it from each other state, triggered by
an failure in the server.

Functions in Idr trigger transitions between states. These
functions are further characterized:

• Icreatedr
⊆ Idr

is the set of functions that return a new
descriptor in state s0.

• Iterminate
dr

⊆ Idr is the set of functions that take a
descriptor as an argument and signify its destruction.

• Iblockdr
⊆ Idr

is the set of functions that can block the
invoking thread.

• Iwakeup
dr

⊆ Idr is the set of functions that correspondingly
wake up a thread.

It should be noted that Iblockdr
6= ∅ ↔ Bdr

. The blocking
semantics of components should be part of the interface
specification as a main factor in determining whether to use
eager or on-demand recovery.

Lock component example. A descriptor to a lock, dlock,
is put into the initial state “available” when the lock alloc
∈ Icreatedlock

function is called which creates a descriptor track-
ing structure in the client. The descriptor can transit into
“taken” state or under contention, into “block” state, by calling
lock take ∈ Iblockdlock

. Calling lock release ∈ Iwakeup
dlock

function
transits the descriptor into “available” state again and allows
other thread to take the lock. Calling lock free ∈ Iterminate

dlock

function will deallocate the tracking data structure when the
function returns.

Basic component recovery (R0). When a fault occurs in the
server component cr and it is µ-rebooted, the descriptor dr
will first transit to the faulty state sf and the client stubs will
be notified of the fault via an exception. At this point, a pre-
computed, shortest path through the state machine is taken,
invoking the corresponding functions f0, . . . , fn ∈ Idr such
that σ(σ(σ(sf , f0), ...), fn) = sexpected where sexpected is the
state of the descriptor before the fault, and each function f0
through fn constitutes the walk from the faulty state to the
destination. This basic mechanism is shared between all model
configurations.

The bottom diagram in Figure 2 shows how the descriptor
state is manipulated from the fault state sf to its “ex-
pected” state during the recovery for the scheduler, file system
(RamFS) and event manager. For example, if a thread is
in the “blocked” state when the scheduler fails, client stub
code i) ensures that the scheduler recreates the thread in its
own structures, and ii) then re-blocks the thread to match the
client’s expectations.

C. Recovery Mapping from Model to Mechanism

In addition to the base recovery R0, we classify the
interface-driven recovery mechanisms into a number of cate-
gories. Each of these is depicted in the top of Figure 2.
Timing of recovery. Song et al. [7] provides the timing
analysis for eager versus on-demand recovery. However, we
must first determine when to use eager or on-demand recovery.
• T0: Eager Recovery. If Br, then some eager recovery
is required at a high-priority at fault-time. Eager recov-
ery must be conducted within the faulted component as
part of the initialization using specialized support similar
to attribute ((constructor)) for execution before
the equivalent of main. The function in Iwakeup provided
by the recovering server’s server is invoked to wake up each
thread that was previous blocked by the faulty component.

• T1: On-Demand Recovery. Aside from the initial µ-
reboot and re-initialization, all recovery can be conducted on
demand if ¬Br. Even if Br is true and the eager recovery
T0 is required for resuming execution of all threads that were
blocked previously by a faulty component, a descriptor with
corrupted state in the faulty component can be recovered from
the component’s interface at the time when the descriptor is
being accessed by a thread. Therefore all client stub-directed
state machine recovery should be on-demand.
Recovery with Dependencies. Parent/child descriptor depen-
dencies necessitate ordering descriptor recovery.
• D0: Recovery with Children Dependency. If Cdr (and
by implication Pdr 6= Solo), then calling f ∈ Iterminate

dr
to

terminate a descriptor dr requires the reconstruction of all
its children descriptors. The semantics of recursive revoca-
tion [16] rely on children termination along with a parent
as the child dependency often implies some side-effect that
must also be terminated (e.g., a virtual page mapping for the
memory manager).

• D1: Recovery with Parent Dependency. If parent depen-
dencies exist, Pdr

= Parent ∧ Pdr
= XCParent, then

descriptors are processed from the root of the dependency tree
to the descriptor being recovered. When Pdr = Parent, this
ordering is by simple parent links within the descriptor data-
structure. For example, when the memory manager recovers
an aliased page (descriptor), its parent mapping previously
aliased from the root mapping must be reconstructed re-
cursively along the path of mappings from the page to the
physical frame (root).
Recovery with the Storage Component
• G0: Recovery with Global Descriptor. When the descrip-
tors are globally addressable (Gdr

is true), multiple clients
share the same descriptor namespace. In such cases, R0 is
not sufficient as a single client component does not have full
context to recover the descriptor. Instead, a storage component
keeps the mapping between each descriptor and their creator
component (i.e., executed the function ∈ Icreatedr

). When the
descriptor is used and the recovered component does not find
the descriptor id it returns an error (EINVAL). The server-side
stub catches this error and queries the storage component that,
if it holds a record of the descriptor, makes an upcall into the

kernel
blocked
threads

...

file data

... ...

...

blocked
threads creator component

...

booter
booter

component

dependency

descriptor

memory image

/

event id /

parent descriptor

resource

U0

D1

G0

T1

1

23

4

6

5

6 6

75 5

...

...

...

8 9

G1 T0

R0

T1

R0 R0

T0 T0G1 G1G0

T1

U0

write

close

tsplit

trelease

twrite
trelease

trelease

waitingtriggered

free

evt_split

evt_waitevt_free

evt_free

D1

T1

evt_trigger

evt_wait

running blocked

sched_block

sched_block

sched_wakeup

sched_create_thd

read

tread

treadcurrent state

fault state

7

99

expected state

open

normal transition

recovery transition

twrite

twrite

tread

(a) Scheduler (b) RamFS (c) Event

Fig. 2: Top diagram shows recovery mechanisms and the timeline between a fault and recovery via micro-reboot in the (a)
Scheduler component. (b) RamFS component. (c) Event component. The oval shadowed area in (c) indicates that the same
descriptor can be accessed from multiple client components (a.k.a, the global descriptor). Bottom diagram shows the transition
from the fault state to a descriptor’s “expected” state in each service during the recovery. The edge is the interface function
and the node is the descriptor state. The dashed line is the normal state transition and the solid line is the recovery transition.

creating component to recreate the descriptor via R0. After
recreation, the server stub replays the previous invocation
using the recovered descriptor.

This mechanism is a case where SuperGlue not only orches-
trates recovery through interfaces, but also uses additional
logic in those interfaces that is cognizant of erroneous return
values to interact with the storage component. In C3, explicit
code to interact with storage components was required. With
SuperGlue, such code is not required.

• G1: Recovery with Resource Data. When there is resource
data (Dr 6= ∅) it is redundantly stored within a storage
component that needs to be introspected to restore the data
for the resource. For example, a file’s data (shared buffer
references) can be stored in a storage component, and retrieved
when the file is accessed and not found.

Though the same trick as for G0 can be used to recreate
the file using an erroneous return value-aware server stub,
thus completely automating the interactions with the storage
component, a race condition exists: when writing to a file it
is non-atomically added to the data-structures in the RamFS
and the storage component. Another thread could thus see
the RamFS’s file data, and the system could crash before the
data is saved in the storage component. Though that thread
saw the file data, upon recovery, it would be gone. Thus,
we manually add storage component interactions within the
critical region that modifies the RamFS data-structures. Future

work may integrate locking into the stubs to thus make storage
component interactions automated.
Recovery with Upcalls
• U0: Recovery using Upcalls. When a descriptor is global
(Gdr

), recovery uses upcalls into client components to set up
the initial state of descriptors as detailed in G0.

D. Server Recovery

Given the above taxonomy of interfaces, component model,
and the mapping of the model to the underlying system
mechanisms, the steps for SuperGlue-assisted recovery of a
server component cr follow. They are also depicted in the top
of Figure 2 for the scheduler, file system (RamFS) and event
manager components.
1 A transient fault corrupts and crashes the component cr.
2 The hardware exception handler is vectored to the booter

component.
3 The booter micro-reboots [19] the faulty component to
memcpy a good image and bring cr into a safe state.

4 An upcall is made into the newly rebooted cr for compo-
nent re-initialization.

5 Blocked threads are woken up in the component cr eagerly
(T0) by calling the interface function Iwakeup

dr
for each

thread while inheriting the highest priority of those threads.
6 When the system switches to a thread (according to its

priority), and it attempts to execute in cr, or utilize a de-

scriptor, the client stub is activated. Here R0 conducts the
state machine-directed recovery at the executing thread’s
priority using on-demand recovery (T1). Any depended-on
descriptors are recovered (D1) first. Dependent descriptors
are recovered (D0) when the current descriptor is termi-
nated through a function ∈ Iterminate

dr
.

7 If the executing thread finds that the descriptor it is
accessing is not yet available in the server, the thread
queries the storage component to retrieve the resource data
(G1). Furthermore, if the server relies on global descriptors
that are missing, they will also be recovered (G0) from
storage components.

8 An upcall is made into the client component that originally
created the descriptor (G0) to rebuild the descriptor in the
expected state (U0).

9 The recovering component cr receives component invo-
cations from the client (R0) on-demand at correct thread
priorities calling Icreatedr

to transit the descriptor into its
initial state s0 and then calling other interface functions to
transit to the expected state.

IV. SUPERGLUE IDL AND COMPILER

In this section, we discuss SuperGlue IDL and compiler for
producing interface-driven recovery code from the declarative
interface specifications to bridge the gap between the high-
level model of a component-based OS and the low-level
interface recovery code.

A. SuperGlue IDL

The model-based syntax for the SuperGlue IDL is intro-
duced in Table I. Syntax derived from the descriptor-resource
model uses a Boolean expression for the corresponding spec-
ification. For the specifications based on the descriptor state
machine, syntax is defined using an interface function for
transitioning the descriptor state.

Syntax for the descriptor state tracking is applied directly
to the function prototypes in the header file for each server
component to enable SuperGlue to derive the tracking data
structure. This syntax indicates how to track descriptors
including what information to track, which descriptor is the
parent descriptor, and how to look up the descriptor.

Figure 3 depicts a complete example of a SuperGlue IDL
file that describes the event notification component’s interface.
A few important notes about the language: The state machines
in the current language are implicit. Pairs of functions are used
to describe the different possible routes execution can take.
Though states could be made explicit, we leaned toward the
side of simplicity in the current SuperGlue implementation.
The descriptor and resource data are not specified in a single
location. Instead arguments and return values from interface
functions are annotated as being tracked either in the descrip-
tor, or for the resource. In each case, the compiler internally
constructs the states, and the tracking structures.

B. SuperGlue compiler

The SuperGlue IDL compiler is factored into a pipeline.
To leverage existing, well-tested code-bases, the first stage
uses the C preprocessor. First, a normal C header (.h) file

service_global_info = {
desc_has_parent = parent,
desc_close_remove = true,
desc_is_global = true,
desc_block = true,
desc_has_data = true

};

sm_transition(evt_split , evt_wait);
sm_transition(evt_wait, evt_trigger);
sm_transition(evt_trigger , evt_wait);
sm_transition(evt_trigger , evt_free);
sm_transition(evt_split , evt_free);
sm_creation(evt_split);
sm_terminal(evt_free);
sm_block(evt_wait);
sm_wakeup(evt_trigger);

desc_data_retval(long, evtid)
evt_split(desc_data(componentid_t compid),

desc_data(parent_desc(long parent_evtid)),
desc_data(int grp));

long evt_wait(componentid_t compid, desc(long evtid));
int evt_trigger(componentid_t compid, desc(long evtid));
int evt_free(componentid_t compid, desc(long evtid));

Fig. 3: Example SuperGlue interface specification for the event notification
component.

/* predicate: true */
CSTUB_FN(IDL_fntype , IDL_fname) (IDL_parsdecl) {
long fault = 0;
int ret = 0;

redo:
cli_if_desc_update_IDL_fname(IDL_params);

ret = cli_if_invoke_IDL_fname(IDL_params);
if (fault){
CSTUB_FAULT_UPDATE();
if (cli_if_desc_update_post_fault_IDL_fname()) goto

redo;
}
ret = cli_if_track_IDL_fname(ret, IDL_params);
return ret;

}

Fig. 4: Code generation template example for each invocation stub.

is generated by defining many of the SuperGlue language
syntactic features as nil. Second, the preprocessor is used to
tokenize each aspect of the SuperGlue file, adding attributes
to variables and functions. A front end parser1 parses the
resulting file, then extracts the specifications from the abstract
syntax tree into an intermediate representation that encodes
the resource-descriptor and state machine models. With this
representation, the shortest path through the state machine is
found to each state. The back end is implemented as a network
of templates associated with predicates. The templates imple-
ment the logic of the recovery mechanisms, and include calls
to other templates. The predicates encode those aspects of the
model that map to the recovery mechanisms as discussed in
Section III-C. Templates are only included in the generated
code if the predicate evaluates to true given the intermediate
representation of the models. The SuperGlue compiler uses
code templates to keep the back end easy to understand and
maintain. The back-end is executed twice with two different
sets of template inputs, once to generate the client stub, and
one to generate the server. In total, the SuperGlue compiler
includes 72 template-predicate pairs.

1We use pycparser, a C parser at https://github.com/eliben/pycparser.

https://github.com/eliben/pycparser

Model Note Syntax

descriptor-resource
model

Br if the thread gets blocked when accessing cr desc block = true|false
Dr if the resource has data resc has data = true|false
Gdr if the descriptor is global desc is global = true|false

Pdr
when there are dependencies,

if dependencies can span components
desc has parent =

Solo | Parent | XCParent
Cdr when close descriptor, if closes children desc close children = true|false
Ydr when close descriptor, if removes dependency desc close remove = true|false
Ddr if the descriptor has data desc has data = true|false

descriptor
state machine

Icreatedr fn creates a new descriptor sm creation(fn)

Iterminate
dr fn terminates the descriptor sm terminal(fn)

Iblockdr thread can get blocked when call fn sm block(fn)

Iwakeup
dr

fn unblocks the thread sm wakeup(fn)

descriptor
state tracking

track returned value usually this tracks new descriptor desc data retval(type, value)fn
update descriptor state track a parameter desc data(type, value)

look up descriptor look up the descriptor using its id desc(descriptor id)
track parent descriptor track the descriptor’s parent descriptor parent desc(parent descriptor id)

TABLE I: Syntax Definition in SuperGlue

/* predicate: f ∈ Icreate
dr

∧ ¬Gdr */

static inline int cli_if_track_IDL_fname(int ret,
IDL_parsdecl) {

if (ret == -EINVAL) return ret;

struct desc_track *desc = call_desc_alloc();
if (!desc) return -ENOMEM;
call_desc_track(desc, ret, IDL_params);

return desc->IDL_id;
}

Fig. 5: Code generation template example for descriptor state tracking.

Two predicate-template pairs are depicted in Figures 4
and 5. Fig 4 shows an example of a code tem-
plate for generating the stub invocation code. The code
cli if desc update IDL fname(IDL params) per-
forms the invocation to the server component. SuperGlue up-
dates IDL fname and IDL params with the name of the in-
terface function being called and its parameters. Before and af-
ter this function call, cli if desc update IDL fname
(IDL params) corresponds to the template for checking
descriptor state, and ret = cli if track IDL fname
(ret, IDL params) corresponds to the template for track-
ing descriptor state, respectively. Each template is only used
if their predicates evaluate to true, thus the resulting generated
code is the composition only of the relevant templates for a
given SuperGlue specification.

V. EVALUATION

We evaluate the fault tolerance properties provided by
SuperGlue in a component-based embedded system, using a
bit-flip based Software Implemented Fault Inject (SWIFI) ap-
proach. We first describe the fault model and SWIFI technique
we used to inject faults into system components. We then
proceed to describe the experiments performed and analyze
the results.

A. Fault Model and SWIFI

The ever-decreasing physical footprint of on-chip transistors
increases the impact of transient faults in pipelines [11],
and therefore leads to errors that corrupt OS state [5] [20].

This work focuses on tolerating transient faults (assuming a
Single Event Upset (SEU) fault model) and assumes a fail-
stop model. We ignore SEUs at the memory level, assuming
solutions such as error-correcting codes (ECC) [12] imple-
mented in hardware to be available, and instead we focus
on SEUs in functional units of the CPU (registers) and their
effects in system-level components. Nicolaidis [21] showed
that SWFI-based single-bit flip in registers can accurately
model transient faults in pipeline logic, which have error rates
that are currently higher than memory [22], [23], [24], [25].

We used a runtime SWIFI technique that injects faults
into registers to mimic transient faults by flipping bits within
the chosen registers. Instructions are encoded as single-word
(32bits) opcode and registers are also single-word sized in
the platform, so the fault type can be defined by a 32-bit
fault mask in which the bits to be affected are set to “1”
and the bits that should be left untouched set to “0”. During
the evaluation, a fault mask of 0xFFFFFFFF is chosen and
the faults are injected by iterating through all threads and
flipping register’s bits only if they are executing within one
of the target server components that provides system-level
service: scheduler, memory manager, file system, lock, event
manager, and timer manager. We mimic the fault distribution
by randomly selecting a register from eight 32-bit registers (6
general purpose registers and 2 special registers ESP and EBP)
periodically and flipping a random bit in the selected register.
Notice that in practice the fault distribution is not uniform,
but it is a first order approximation used by previous fault
injection approaches [26] [27]. In [28], the calculation shows
that at most one fault occurs over a window of 509.15 seconds
with probability 99.999999% (assuming the distribution of the
transient faults in any fixed time interval follows a Poisson
distribution).

B. Benchmark Workloads

Using above-mentioned SWIFI technique, faults are in-
jected into system components that provide system-level ser-
vices: scheduler, memory manager, file system, lock, event
manager, and timer manager. We first describe for each system

0

 1

 2

Sched MM FS Lock Event Timer

C^3
SuperGlue
Execution w/o tracking

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Sched MM FS Lock Event Timer

C^3
SuperGlue

0

 100

 200

 300

 400

 500

 600

 700

Sched MM FS Lock Event Timer

C^3
SuperGlue generated code
SuperGlue IDL header
Normal header

(a) Infrastructure Overhead (µs) (b) Descriptor Recovery Overhead (µs) (c) Recovery Code in LOC

Fig. 6: SuperGlue micro-benchmarks for each system component (compared with C3): (a) infrastructure overhead with
descriptor state tracking (µs). (b) per-descriptor recovery overhead (µs). (c) LOC for stub-based recovery code added to
each system component.

component the workload used in fault injection campaign:

• Scheduler (Sched): Two threads perform a ping-pong,
blocking and waking each other in turn using sched blk
and sched wakeup.

• Memory Manager (MM): A thread is granted memory
pages, and these pages are aliased into a different component,
and then revoked, which removes all aliases.

• RAM File System (FS): A file is opened, a byte is written
to it, read from it, and then it is closed.

• Lock (Lock): A thread holds a lock and another thread
contends the same lock. After the owner thread releases, the
other thread acquires the lock.

• Event (Event): A thread is blocked waiting for an event
and the other thread triggers the event from a different
component.

• Timer Manager (Timer): A thread wakes up, then blocks
for a certain amount of time periodically.

C. Micro-Benchmark Results

The experiments reported in this section have been per-
formed in COMPOSITE component-based OS on an Intel i7-
2760QM running at 2.4 Ghz with only one core enabled.
SuperGlue is evaluated with six system-level components:
scheduler, memory manager, file system, lock, event manager,
and timer manager. In Fig 6, we compare SuperGlue with
C3 [7] and present the micro-benchmarks results for each
system component.

Fig 6(a) shows the average infrastructure overhead (in
microseconds, with standard deviation) for tracking descrip-
tor state in SuperGlue and in C3, where the infrastructure
overhead is defined as the base execution time of the micro-
benchmark plus the average (stdev) time needed to track
descriptor state. The result shows that SuperGlue has the
similar amount of overhead as C3. Fig 6(b) for each system
component compares the per-descriptor recovery overhead
in SuperGlue and C3, which is the average (stdev) time to
recover a descriptor to its “expected” state from the fault
state. The recovery overhead correlates with the number of
steps determined from Section III. For example, the cost of
recovering an event descriptor is higher than the cost for a lock
descriptor because the event server relies on all mentioned

recovery mechanisms, except (D0) , whereas a lock descriptor
only needs eager recovery (T0), base recovery (R0), and on-
demand recovery (T1).

Fig 6(c) shows the lines of code (LOC) in SuperGlue IDL
header file, which is written in SuperGlue IDL, for each
system component and compares the LOC of recovery code
added by SuperGlue and by C3. The result shows with only a
small amount of declarative code written in SuperGlue IDL,
SuperGlue compiler is able to generate interface-driven fault
recovery code for many system-level services in a component-
based OS. For example, with only 32 LOC written in
SuperGlue IDL, the compiler generates 464 LOC that recovers
the memory manager from faults. These results show that
SuperGlue can be both efficient and effective in recovering
low-level system services. SuperGlue seeks to make the pro-
cess of constructing dependable embedded system “correct-
by-construction,”, instead of “construct-by-correction” which
is time-consuming and error-prone.

D. Fault Injection Campaign Results

We evaluate the effectiveness of SuperGlue through a fault
injection campaign. Depending on the effects of a fault, and
if they are detected, we define injected faults in the target
system component as follows:

• Fa is the set of injected faults that cause the target
component to deviate from its expected behavior and are
detected (e.g., as the fault generates a hardware exception,
triggers an assertion, causes a system hang or even crashes
the system). This type of fault is defined as an activated
fault in [6].

• Fr is the set of activated faults in the target component
that are recovered by SuperGlue successfully. A successful
recovery is defined by the continued execution that abides
by the target component and workload specifications post-
recovery.

•
|Fr|
|Fa| is fault recovery success rate, which denotes how

many activated faults in the target component have been
recovered successfully.

• Fu is the set of injected faults that are not detected
(undetected faults).

System
Component Injected Recovered Faults Not recovered

(segfault)
Not recovered
(propagated)

Not recovered
(other reason) Undetected Fault

Activation Ratio
Recovery

Success Rate
Sched 500 436 54 0 2 9 98.36% 88.58%
MM 500 431 35 1 4 30 94.26% 91.48%
FS 500 455 18 0 0 29 94.7% 96.14%

Lock 500 433 33 2 0 31 93.82% 92.35%
Event 500 450 16 2 0 33 93.83% 96%
Timer 500 460 26 0 0 18 97.23% 94.62%

TABLE II: SWIFI-based Fault Injection Campaign with SuperGlue

The total number of injected faults is given by |Fa ∪ Fu|
and the fault activation ratio is given by |Fa|

|Fa∪Fu| . During each
campaign, a maximum number of faults (i.e., |Fa∪Fu| = 500)
were injected into each low level system component while
the workload is running. After each injection, the executing
thread resumes and the program is run to completion (unless
the system crashes and we need reboot the machine). After
each workload execution, the system is rebooted to clear any
residual errors before the next run. We record the number of
recovered faults Fr, the number of non recovered activated
faults and report both the fault activation ratio and the
fault recovery success rate. For each system component, we
evaluate SuperGlue by executing that component’s workload
repeatedly while a SWIFI thread in a separate component
is responsible for injecting faults into the target component
periodically, for example randomly flipping bits in chosen
registers every 1 second. Note that register bit-flips do not
always lead to errors (e.g., a flipped register can be overwritten
before it is read) and those are undetected faults. The system,
without being rebooted, continues execution with the next
fault being injected when one of the following conditions is
observed: if the injected component is recovered successfully
from the activated fault, or the injected fault is not activated
at all (undetected fault). Otherwise, the system needs to be
rebooted and resumes the fault injection campaign until the
maximum number of faults have been reached.

Table II shows the result of fault injection campaign for
each system component with SuperGlue and it can be seen
that most of activated faults in the server component can
be effectively recovered. For example 96.14% of activated
faults in FS component have been successfully recovered.
This work focuses on recovering faults rather than detect-
ing faults, however, we also report our observations on the
effect of injected faults in Table II. Very few activated faults
propagate to non system-level client components and cause an
unrecoverable fault, due to hardware-based isolation between
components. For example, Table II shows that only 1 out
of 470 detected faults (about 0.2%) became unrecoverable
due to propagation when the faults are injected into the MM
component. Although this situation can be improved with
well specified interfaces with pervasive error checking and
validation of inputs (as in [29], [30]), SuperGlue focuses on
the recovery of system-level components in this work.

Among all unrecoverable faults, we observed that some
activated faults lead to segfault crashes (i.e., the system exits
with segmentation fault). For example, Sched component has
the most segfault crashes (10% of injected faults lead to

segfault crash), and for Event component this is around 3%.
This is the main impact on the fault recovery success rate;
further investigation might be necessary. There are also some
activated faults that cause the system to hang, rather than
crash, and we label these as “Not recovered (other reason)” in
Table II. Injected faults might cause infinite loops in the target
component. This type of fault is defined as latent fault and has
been discussed in C’MON [28]. The result of fault activation
ratio, which is defined as the percent of activated faults in all
injected faults, shows that our SWIFI can effectively inject and
activate faults in the target component. For example, 98.36%
of injected faults were activated in Sched component when
using SWIFI.

E. A Web Server Benchmark Workload

To thoroughly evaluate the degradation and overheads, that
is, the holistic cost of recovery, we use an application web
server that is system and I/O intensive in which average
case performance is a priority. This web server, which makes
use of all system-level components, enables us to determine
the impact of the recovery infrastructure on best-effort tasks,
whereas prior work [7] has demonstrated the real-time prop-
erties of interface-driven recovery. We evaluate a custom
web server implemented in COMPOSITE, COMPOSITE with
SuperGlue and COMPOSITE with C3 under normal condition
and under the presence of injected faults. We also compare
performance with the Apache HTTP server of version 2.2.14,
which is running on Linux 3.2.6 on a machine with Intel i7-
2760QM at 2.4 Ghz. Performance is measured by how many
requests per second are handled by each web server with ab,
the Apache HTTP server benchmarking tool of version 2.3.
During each test, ab sends 50000 requests with a maximum
of 10 requests concurrently to the server for benchmarking.

Figure 7 shows the performance in throughput (HTTP
requests per second) of all four variations when running for
one minute, which is repeated 20 times with measurements
taken for each, and we report the average and standard
deviation. Apache achieves around 17600 requests per second,
and the COMPOSITE base web server achieves about 16200
requests per second. COMPOSITE with SuperGlue achieves
average 14281 requests per second (11.84% slowdown), while
COMPOSITE with C3 achieves average 14500 requests per
second (10.5% slowdown).

We evaluated recovery using COMPOSITE with SuperGlue
and COMPOSITE with C3 by injecting faults into one system-
level component every 10 seconds. We observe that recovery
proceeds in parallel to continued web server operations, and
after recovery the web server achieves similar throughput as

before the fault occurred. For example, when the fault occurs
in the scheduler, the web server throughput is only disturbed
temporarily for less than 2 seconds and continues serving
clients, without dropping the network throughput down to
zero. These results indicate that SuperGlue can improve
system reliability with minor performance degradation.

10000

11000

12000

13000

14000

15000

16000

17000

18000

19000

0 10 20 30 40 50 60

T
h
ro

u
g
h
p
u
t
(r

e
q
u
e
st

s
/
se

c)

Time (seconds)

Web server throughput comparison

Apache HTTP Server

C
3

Web Server w/o fault

SuperGlue Web Server w/o fault

Composite Web Server

C
3

Web Server w/ fault

SuperGlue Web Server w/ fault

scheduler lock
timer

manager
file

system
memory
manager

event
manager

Fig. 7: Web Server Throughput. Requests/Second for Apache,
COMPOSITE, COMPOSITE with C3 without faults, COMPOS-
ITE with C3 COMPOSITE with SuperGlue without faults, and
COMPOSITE with SuperGlue with one crash injected every 10
seconds, as indicated by red crosses, into a different system-
level component.

VI. RELATED WORK

There has been considerable work on improving OS relia-
bility. Two well-known approaches are TMR and checkpoint-
restore, both of which incur heavy overhead. TMR achieves
reliability through redundancy, which comes at the cost of
more than tripling SWaP costs. Checkpoint-restore, for exam-
ple in EROS [31], Otherworld [32] and Tardigrade [33], takes
a snapshot of the OS services and rolls back to a previous state
when a fault occurs. In addition to the storage and time spent
creating checkpoints, checkpointing client (user-space) state
incurs extra overhead for consistency. Another drawback of
restoring a checkpoint, aside from the overhead, is that com-
putation and communication since the last saved checkpoint
can be lost and the current physical system state and the state
expected by the control system from checkpointed information
could mismatch [7]. Additionally, process level [34] replica-
tion can be made to improve system reliability by using a set
of redundant processes per original application process and
compares their output to ensure correct execution.

A. Dependability in OS

Nooks [1] improves Linux reliability by moving device
drivers into a light-weight protection domain with limited ac-
cess to the kernel’s memory space. A shadow driver, designed
with the same interface as the original driver, monitors the
transfer of data during normal execution. Device drivers and
their shadow drivers run in privileged mode. When a fault

happens, the shadow driver becomes active instead of the
original driver so it can be recovered with previously saved
state.

Minix [35] is a microkernel OS, in which a special iso-
lated component, the reincarnation server, can restart faulty
components by recreating a fresh copy. Minix does not track
client state however, and therefore the recovery mechanisms
only work well for stateless servers such as device drivers.
In other words, the reincarnation server is not applicable
for OS services that use client state. Additionally, system-
level services in Minix such as memory management are still
implemented in the kernel space, which makes building a
reliable OS tolerant of system-level faults challenging.

CuriOS [36] is a microkernel OS in which a Server State
Region (SSR) stores each server’s client-related information
that is protected from both the server and client. All SSRs
are managed by a single separate component (SSRManager)
and requests that cause crashes are isolated by restricting
write from clients. A SSR can be created and deleted when
a client accesses a server and returns. When a fault occurs in
a server, a recovery routine in the restarted server is invoked
to enumerate all associated SSRs for recreating the internal
state of the restarted server. However, SSRManager is a single
point of failure and not desirable for a reliable OS when faults
can occur in system-level services. In contrast, COMPOSITE
with C3 [7] as we have discussed in SectionII, focuses on
the fault tolerance mechanism for system-level services and
C’MON [28] allows predictable detection of latent faults in
system-level services in component-based OS.

Instead, SuperGlue aims at building reliable OS while
reducing programming effort. SuperGlue makes constructing
reliable OS a much less error-prone process. It achieves this by
mapping a high-level abstract system model (see SectionIII) to
the low-level interface-driven recovery mechanisms, and im-
proves the reliability for system-level services in a component-
based OS with only a small performance degradation. Al-
though the system model and fault recovery mechanisms
could be further integrated with formal specification tech-
niques [37] [38] to achieve greater system assurance, we have
focused on using a model that enables a concise definition of
system behavior to evaluate SuperGlue’s effectiveness.

B. Interface Synthesis

To support software design, automatic code generation
with interface description language (IDL) have been studied
extensively in the past for different purposes. Flick [39] aims
to build a highly flexible IDL compiler which can be used
with various IDL types as well as generate code for different
communication platforms. For example, Flick supports IDLs
such as CORBA IDL at the frontend, and L4 at the backend.
Flick achieves this modularity through a series of programmer-
visible intermediate languages which can be operated on
independently.

Jinn [30] is a dynamic analysis framework for Java Native
Interface (JNI) and can be used to synthesize runtime checks
to detect language interface violations. Jinn defines three
categories of rules that can be expressed using eleven finite
state machines. Based on these FSMs, Jinn enforces these

rules by dynamically injecting checks into user code with
language interposition at the JNI interfaces for uncovering
software bugs.

In contrast, SuperGlue IDL aiming at system reliability,
allows declarative high-level description about a component-
based OS based on a resource-descriptor relation model and a
descriptor state machine, and enables SuperGlue compiler to
generate the fault recovery code for system-level services and
enhance component-based embedded system dependability.

VII. CONCLUSION

Faults in system-level services usually necessitate rebooting
the system, thus disrupting all applications. In real-time and
embedded systems, this means violating the temporal guaran-
tees of applications, thus violating system correctness. This
paper presents SuperGlue, an infrastructure built on top of
the predictable recovery mechanisms of C3 to improve the
programmability of those mechanisms. We introduce a model
of component and interface semantics that enables the IDL-
based, declarative specification of the salient properties that
the SuperGlue compiler uses to generate recovery code. The
average SuperGlue IDL file replaces C header files and is 37
lines of code, an order of magnitude improvement over C3

which required manually written, error-prone recovery code.
We demonstrate that the SuperGlue infrastructure causes a
non-prohibitive slowdown of 11.84% in a throughput-oriented
application (a web-server). Even with injected faults, the
slowdown is only 13.6%.

REFERENCES

[1] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving
the reliability of commodity operating systems. In SOSP, 2003.

[2] Pedro Mejı́a-Alvarez and Daniel Mossé. A responsiveness approach for
scheduling fault recovery in real-time systems. In RTAS, 1999.

[3] A. Burns, S. Punnekkat, L. Strigini, and D. R. Wright. Probabilistic
scheduling guarantees for fault-tolerant real-time systems. In DCCA,
1999.

[4] S. Punnekkat and A. Burns. Analysis of checkpointing for schedulability
of real-time systems. In RTCSA Workshop, 1997.

[5] Man-Lap Li, Pradeep Ramachandran, Swarup Kumar Sahoo, Vikram S.
Adve, and Yuanyuan Zhou. Understanding the propagation of hard
errors to software and implications for resilient system design. In
ASPLOS, 2008.

[6] R. Barbosa, J. Karlsson, Qiu Yu, and Xiaozhen Mao. Toward depend-
ability benchmarking of partitioning operating systems. In DSN, 2011.

[7] Jiguo Song, John Wittrock, and Gabriel Parmer. Predictable, efficient
system-level fault tolerance in C3. In RTSS, 2013.

[8] Gabriel Parmer and Richard West. Mutable protection domains:
Adapting system fault isolation for reliability and efficiency. In ACM
Transactions on Software Engineering (TSE), July/August 2012.

[9] P. Chevochot, I. Puaut, and Projet Solidor. Experimental evaluation of
the fail-silent behavior of a distributed real-time run-time support built
from cots components. 2000.

[10] S. Chandra and P. M. Chen. How fail-stop are faulty programs? In
FTCS, 1998.

[11] Shekhar Borkar. Designing reliable systems from unreliable compo-
nents: The challenges of transistor variability and degradation. IEEE
Micro, 2005.

[12] Shubu Mukherjee. Architecture Design for Soft Errors. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[13] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. Speck: A
kernel for scalable predictability. In Proceedings of the 21st IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2015.

[14] Gabriel Parmer. The case for thread migration: Predictable IPC in a
customizable and reliable OS. In OSPERT, 2010.

[15] Bryan Ford and Jay Lepreau. Evolving Mach 3.0 to a migrating
thread model. In Proceedings of the Winter 1994 USENIX Technical
Conference and Exhibition, 1994.

[16] J. Liedtke. On micro-kernel construction. In Proceedings of the 15th
ACM Symposium on Operating System Principles. ACM, December
1995.

[17] Yuxin Ren, Gabriel Parmer, Gedare Bloom, and Teo Georgiev. Cbufs:
Efficient, system-wide memory management and sharing. In Proceed-
ings of the 2016 International Symposium on Memory Management,
2016.

[18] Kevin Elphinstone and Gernot Heiser. From L3 to seL4 what have we
learnt in 20 years of L4 microkernels? In SOSP, 2013.

[19] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.
Microreboot–a technique for cheap recovery. In OSDI, 2004.

[20] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, San-
jay J. Patel, and Ravishankar K. Iyer. An experimental study of soft
errors in microprocessors. IEEE Micro, 2005.

[21] M. Nicolaidis. Time redundancy based soft-error tolerance to rescue
nanometer technologies. In VLSI Test Symposium, 1999.

[22] A. Wood A. Dixit, R. Heald. Trends from ten years of soft error
experimentation. In SELSE, 2009.

[23] Jonathan Chang, George A. Reis, and David I. August. Automatic
instruction-level software-only recovery methods. In DSN, 2006.

[24] Nicholas J. Wang, Justin Quek, Todd M. Rafacz, and Sanjay J. Patel.
Characterizing the effects of transient faults on a high-performance
processor pipeline. In DSN, 2004.

[25] M. Rebaudengo, M.S. Reorda, and M. Violante. An accurate analysis of
the effects of soft errors in the instruction and data caches of a pipelined
microprocessor. In DATE, 2003.

[26] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and
David I. August. Swift: Software implemented fault tolerance. In CGO,
2005.

[27] N.J. Wang and S.J. Patel. Restore: Symptom based soft error detection
in microprocessors. In DSN, 2005.

[28] Jiguo Song and Gabriel Parmer. C’MON: a predictable monitoring
infrastructure for system-level latent fault detection and recovery. In
RTSS, 2013.

[29] Manuel Fähndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson,
Galen C. Hunt, James R. Larus, and Steven Levi. Language support
for fast and reliable message-based communication in Singularity OS.
In EuroSys, 2006.

[30] Byeongcheol Lee, Ben Wiedermann, Martin Hirzel, Robert Grimm, and
Kathryn S. McKinley. Jinn: synthesizing dynamic bug detectors for
foreign language interfaces. In PLDI, 2010.

[31] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: A
fast capability system. In SOSP, 1999.

[32] Alex Depoutovitch and Michael Stumm. Otherworld: giving applica-
tions a chance to survive OS kernel crashes. In Proceedings of the 5th
European conference on Computer systems, pages 181–194, New York,
NY, USA, 2010. ACM.

[33] Jacob R. Lorch, Andrew Baumann, Lisa Glendenning, Dutch T. Meyer,
and Andrew Warfield. Tardigrade: Leveraging lightweight virtual
machines to easily and efficiently construct fault-tolerant services. In
NSDI, 2015.

[34] A. Shye, J. Blomstedt, T. Moseley, V.J. Reddi, and D.A. Connors. Plr: A
software approach to transient fault tolerance for multicore architectures.
TDSC, 2009.

[35] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and An-
drew S. Tanenbaum. Reorganizing unix for reliability. In ACSAC, 2006.

[36] Francis M. David, Ellick M. Chan, Jeffrey C. Carlyle, and Roy H.
Campbell. Curios: Improving reliability through operating system
structure. In OSDI’08.

[37] M. Rodriguez, J. C. Fabre, and J. Arlat. Formal specification for building
robust real-time microkernels. In RTSS, 2000.

[38] Jean Arlat, Jean-Charles Fabre, Manuel Rodrı́guez, and Frédéric Salles.
Dependability of cots microkernel-based systems. IEEE Transactions
on Computers, 2002.

[39] Eric Eide, Kevin Frei, Bryan Ford, Jay Lepreau, and Gary Lindstrom.
Flick: a flexible, optimizing idl compiler. In PLDI, 1997.

	Introduction
	Background: Composite and C3
	Fault Model
	Composite Component-based OS
	C3 Interface-Driven Recovery
	Example: Recovering the Memory Manager
	Assumptions and Scope of This Work
	C3 recovery mechanisms: summary and limitations.

	SuperGlue System Model
	Descriptor-Resource Model
	Descriptor State Machines
	Recovery Mapping from Model to Mechanism
	Server Recovery

	SuperGlue IDL and compiler
	SuperGlue IDL
	SuperGlue compiler

	Evaluation
	Fault Model and SWIFI
	Benchmark Workloads
	Micro-Benchmark Results
	Fault Injection Campaign Results
	A Web Server Benchmark Workload

	Related Work
	Dependability in OS
	Interface Synthesis

	Conclusion
	References

