
Work-In-Progress: Reducing Cache Conflicts via
Interrupts and BUNDLE Scheduling

Corey Tessler
Wayne State University

corey.tessler@wayne.edu

Gedare Bloom
Howard University

gedare@scs.howard.edu

Nathan Fisher
Wayne State University

fishern@wayne.edu

Abstract—In “BUNDLE: Real-Time Multi-Threaded Schedul-
ing to Reduce Cache Contention” Tessler and Fisher present a
positive perspective of instruction caches for hard real-time multi-
threaded tasks. The thread-aware scheduling algorithm limits the
execution of threads to sets of instructions that cannot result
in cache conflicts. Identification of these sets result in conflict
free regions which are used to identify scheduling groups called
bundles in the BUNDLE scheduling algorithm. Placement of a
thread in a particular bundle depends on, what the authors call,
“anticipating execution”. However, they do not define a complete
mechanism to anticipate execution.

In this work, we propose a method to anticipate execution that
modifies cache hardware and introduces a new interrupt raised
prior to a cache conflict. This new interrupt is combined with (a
slightly modified version of) the BUNDLE scheduling algorithm.
The intent is to implement these hardware modifications for ARM
on the gem5 simulator with the scheduling algorithm integrated
into the RTEMS operating system. The hope is this work serves
as further motivation to bring the positive perspective of caches
to physical processors and operating systems.

Keywords—Scheduling algorithms, Cache Memory, Multi-
threading, Static Analysis

I. INTRODUCTION

In BUNDLE [1] a positive perspective on the shared re-
source of instruction caches is presented in the context of hard
real-time multi-threaded tasks. Previous analytical techniques
for worst case execution time [2, 3], cache related preemption
delay [4]–[6], scheduling [7], and schedulability analysis [8]–
[10] operated independently. A unified approach is proposed,
one that shares information between all components.

The setting is limited to a single multi-threaded task,
releasing m threads per job. Within a task, there may be
multiple instructions that serve as the entry point of a thread.
An entry instruction and the set of instructions reachable from
it are referred to as a ribbon.

A task τi belongs to the set of all tasks τ and contains
several ribbons ρi, ρi+1, ... in the set of all ribbons ρ. Each
task releases jobs, denoted τ ji where j is the index of the
job. Exactly m threads are released with each job. A thread
begins execution with the entry instruction of a ribbon ρi and
is denoted ρki where k ∈ {1..m} is the index of the thread.

This research has been supported in part by the US National Science
Foundation (CNS Grant Nos. 1205338, 1618185 and 1646317)

A thread-aware scheduling algorithm BUNDLE selects
which thread may run at any time instant. Thread selection
depends on the bundle which a thread belongs to at any time.
Only threads of the active bundle are allowed to execute, and
only one bundle is allowed to be active. A thread moves from
one bundle to another by attempting to execute an instruction
that would result in a conflict.

To identify at runtime an attempted instruction execution,
a short proposal for a hardware mechanism was proposed
alongside BUNDLE. However, the brief description is insuffi-
cient for a physical implementation. This work furthers support
for BUNDLE by proposing a CONFLICT interrupt that meets
the requirements of the scheduling algorithm. The proposed
modifications to cache memory described in Section II. The
cache modifications are integrated into BUNDLE’s scheduling
algorithm in Section III. Since this work is currently in
progress, we summarize our current results and describe the
remaining effort in Section IV.

II. CACHE MODIFICATIONS

Current cache and memory architectures are insufficient
for BUNDLE’s scheduling algorithm. The scheduling algorithm
depends on static analysis to determine which instructions
can lead to cache conflicts. To be reliable, static analysis
depends upon BUNDLE to block threads when they attempt
to execute conflicting instructions. At the time of this work,
no mechanism is known that can detect a thread attempting
to execute a conflicting instruction. This is due (in part)
to the modular design of caches, operating as passageways
for data from main memory to the CPU without burdening
the processor with cache management. The opaque nature of
modular design has precluded the inspection of cache contents.

To allow BUNDLE to respond to the intended execution
of conflicting instructions, modifications to cache memory are
proposed. The focus of the changes are a set of new flag bits
named conflict bits or xbits. Each cache block is extended by
the set of conflict bits, which have their value set by a new
XMASK register. These bits act as a filter to raise potential
CONFLICT interrupts to the processor. A description of the
novel interrupt mechanism relies on a working model of cache
memory. What follows is a brief description of set associative
caches [11], which is then modified to include conflict bits.

A. Cache Background

An n-way set associative cache places n cache blocks
within the same cache set. A cache block holds copies of one
or more words addressable in main memory.c

978-1-5090-5269-1/17 $31.00 © 2017 IEEE 123978-1-5090-5269-1/17 $31.00 © 2017 IEEE 125978-1-5090-5269-1/17 $31.00 © 2017 IEEE 125

An address in main memory is referred to as an effective
address and is divided into three parts: a tag, index, and offset
as depicted in Figure 1a. The index identifies the cache set of
the block, and the offset specifies the location within the block
to find the data.

Only sets have addresses within a cache. To determine
if the data of particular address is present the cache block
must also store the tag of the effective address—as shown in
Figure 1b. In addition to the tag, each block carries flag bits
to indicate if the entry is valid or dirty.

(a) Effective Address (b) Cache Block

Fig. 1: Addresses and Cache Blocks

The relationship between data from main memory and
the corresponding location in cache memory is illustrated in
Figure 2. For simplicity, main and cache memory are presented
as a sequence of cache block sized regions which also allows
the offsets to be omitted.

Fig. 2: Main Memory to Cache Memory

B. Extending Cache Flags with xbits

Figure 3 highlights the extension proposed in this paper.
Each cache block is extended by a few bits to store conflict bits
(xbits). The number of bits required for the xbits field depends
on the number of ribbons and is equal to max(1, log2|ρ|).
There are no restrictions on the values of conflict bits.

Fig. 3: Conflict Bits

Conflict bits are added to cache blocks as a side effect of
loading. A cache load (which we assume occurs on a cache
miss) copies the value from main memory and tag from the
address to the block. The change, proposed herein, copies the

value from our newly-proposed XMASK register to the xbits of
cache blocks when they are loaded. There is a special XMASK
value of clear and is represented by the symbol ∅. It indicates
that the xbits have not been set or is to be ignored.

The contents of the XMASK register are under control of
the CPU, which can read and write any value to it. The cache
is permitted to read, but not write the contents of the XMASK
register. Similarly, the CPU is not given visibility into the cache
to inspect cached values, addresses, or xbits.

In addition to affecting cache loads, the XMASK register in-
fluences cache flush commands such as the WBINVD command
found in Intel processors [12]. When a flush and invalidate is
requested only those blocks with matching xbits are cleared.
If the XMASK register has the value ∅ all cache blocks are
cleared.

C. Raising a Conflict Interrupt

Conflict bits on cache blocks and the XMASK register are
input to a new hardware interrupt. When the interrupt is raised,
it indicates the instruction being executed would have resulted
in a cache miss (and load) if it were allowed to perform the
requested memory access. Raising an interrupt for every cache
miss would be excessive, to limit the conditions under which
the interrupt is raised the XMASK register is used as a filter.

Pseudo-code for the proposed hardware interrupt is given
in Figure 4. Cache memory is represented by an array C. An
index i into C addresses a single cache block. A cache block
is a tuple containing a tag t, flag bits f , xbits x, and value v,
e.g. C[i] = (t, f, x, v).

The presence of two hardware facilities are required for the
conditional load procedure. The first BLOCK(a) determines
the proper cache block index of an effective address a. It is
the responsibility of BLOCK(a) to select the appropriate cache
block index when a is present or absent from the cache. If
a is absent from the cache and the cache set a belongs to
contains any cached block with index i and xbits �= ∅, i must
be returned by BLOCK(a). For the purposes of this paper the
replacement policy is immaterial. The FETCH(a) procedure
delivers from main memory the value at address a.

1: procedure COND LOAD(a)
2: i← BLOCK(a)
3: x← C[i] = (t, f, x, v)
4: if x = XMASK then
5: raise(CONFLICT)
6: else
7: v ← FETCH(a)
8: C[i]← (t, f, XMASK, v)
9: end if

10: end procedure

Fig. 4: Conditional Load

The interrupt mechanism is straightforward. When a cache
load is requested for block i, extract the current xbits value as x
(C[i] = (t, f, x, v)). If x �= XMASK perform the cache load. If
x = XMASK do not perform the cache load into C[i] and raise a
CONFLICT interrupt. From the CPU’s perspective, a memory
access that results in a CONFLICT interrupt is a rejection of
the access while maintaining the current state of the cache.

124126126

A CONFLICT interrupt is precise, instructions present in
the pipeline that precede the conflicting instruction in program
order are committed and those succeeding are removed. The
conflicting instruction is removed from the pipeline without a
lasting effect. After handling the CONFLICT interrupt at the
CPU an interrupt service routine (ISR) is invoked, allowing
the scheduler to respond.

III. SCHEDULER INTEGRATION

An interrupt mechanism is proposed in BUNDLE [1], but
lacks a definition or description of integration with the schedul-
ing algorithm BUNDLE. In this section, a possible definition
and integration are given along with justification for their
construction. To do so, several portions of BUNDLE [1] are
repeated and summarized to clarify the interaction with the
new hardware mechanism.

Under BUNDLE threads are scheduled based on conflict
free regions. A conflict free region is a sub-graph of the
control flow graph of a task. A control flow graph [13] is
a representation of the instructions of a task that models the
valid paths of execution a thread may take. Analysis of the
control flow graph identifies sub-graphs with the properties 1.)
no two instructions map to the same cache block (set) 2.) each
sub-graph contains a single entry point. These sub-graphs are
named conflict free regions. Figure 5 illustrates the relationship
between a control flow graph (CFG) and conflict free regions
(CFRs).

Fig. 5: CFG and CFRs

Fig. 6: CFRG

Vertexes highlighted in Figure 5 are the
entry instructions of conflict free regions,
and they uniquely identify each region by
their address. Using the entry instructions as
vertexes and maintaining connectivity from
the CFG a new graph is generated called the
conflict free region graph abbreviated (CFRG). Figure 6 is the
CFRG corresponding to the CFG in Figure 5.

The entry instructions of CFRs are used to make scheduling
decisions by BUNDLE. Each address yi ∈ Y identifies a bun-
dle, which threads belong to. Recall that one bundle is active,
only threads of the active bundle are permitted to execute.
At job release, all threads of the same ribbon are awaiting
to execute the same instruction and are placed within the
same bundle. While executing in the active bundle if a thread
attempts to execute an instruction outside of the associated
CFR the thread is placed in a new bundle and suspended.

Pseudocode of the scheduling algorithm is given in Figure
7. A small modification is required to the BUNDLE procedure.
At line 11 when the condition is true a new bundle is being
selected as active. As a new bundle is being selected, the cache
must be flushed to clear any errant xbits values. Line 15 was
added to avoid spurious interrupts.

1: R � Set of Threads
2: Y � Set of Conflict Free Region Entry Points
3: procedure BUNDLE
4: A← R � Active Bundle
5: B ← ∅ � Inactive Bundles (Blocked Threads)
6: while true do
7: ρi ← a, a ∈ A � Select a thread
8: RUN(ρi) until ρi’s next instruction is y ∈ Y
9: B[y]← B[y] ∪ ρi

10: A← A� ρi

11: if
∣
∣
∣
∣
∪

y∈Y
B[y]

∣
∣
∣
∣
= |R| then

12: Select z ∈ Y, |B[z]| �= 0
13: A← B[z]
14: B[z]← ∅

15: CFLUSH()
16: end if
17: end while
18: end procedure

Fig. 7: BUNDLE [1] Scheduling Algorithm

Line 8 of the pseudocode was previously undefined and
is the focus of this work. Line 8 requests a thread ρi be run
until the next instruction executed is in the set Y indicating the
thread is leaving the current conflict free region. It is the cache
modification and interrupt mechanism defined in the previous
section that enables the desired behavior.

Presented as pseudocode in Figure 9, the RUN procedure
relies on two products of static analysis: the existing next inter-
thread cache conflicts (P (a)) and the new conflictors (P ′(a)).
Next inter-thread cache conflicts from an entry instruction
a ∈ Y are a set of entry points in subsequent conflict free
regions A ∈ Y . The new conflictors function maps an entry
instruction a ∈ Y to the set of addresses B that conflicted with
P (a). These are the instructions that conflicted with the next
inter-thread cache conflicts. All instructions of P ′(a) = B are
found within the conflict free region identified by a.

Figure 8 illustrates the relationship between inter-thread
conflicts and conflictors. For CFR a1 the set of next inter-
thread conflicts (which is a superset of the intra-thread con-
flicts) is P (a1) = {a2, a3}. The instructions conflict with
{b1, b2} since {a2, a3} use the same cache blocks respectively.
Therefor, P ′(a) = {b1, b2}.

Fig. 8: Conflicts

In addition, the following facilities provided by the op-
erating system and architecture are utilized. The functions
SAVE CTX and RESTORE CTX save and restore the context
of a thread ρ. A thread has a current program counter available
as ρ.pc. To flush and invalidate the cache CFLUSH clears the
cache block values, tags, and xbits which match the current
value of the XMASK register—or all blocks if the value is ∅.

125127127

1: procedure RUN(ρ)
2: B ← P ′(ρ.pc) � Instructions that will conflict
3: XMASK ← ρ � Set the XMASK register for the cache
4: for all b ∈ B do
5: PREFETCH(b)
6: end for � Cache blocks ∀b ∈ B xbits are set
7: RESTORE CTX(ρ) � Begin executing ρ
8: � ρ executes until completion or interrupt
9: SAVE CTX(ρ)

10: end procedure

Fig. 9: RUN Procedure

A PREFETCH operation is required, one that performs
a cache load for the specified block. The load copies the
value from main memory, stores the proper tag, and copies
the XMASK value to the xbits of the cache block. Some ARM
processors [14] provide a prefetch instruction (PRFM) which
could be used in place of PREFETCH in the pseudocode (pre-
suming the xbits are set according to the current XMASK value).
No other instruction pre-fetching is permitted, if provided by
the processor it must be disabled.

There are three conceptual sections to the RUN algorithm,
preparation, execution, and resumption. Preparation caches the
conflictor values which sets the xbits of each cache block for
instructions that will conflict with the entry instructions of
subsequent conflict free regions. Execution restores the context
of the thread before executing it by jumping to the program
counter.

During execution, an instruction a will fall into one of three
categories:

1) Cache miss with xbits value of ∅.
2) Cache miss with xbits value of ρ.
3) Cache hit with xbits value of ρ.

Case 1 corresponds to an instruction being executed for
the first time, having never been cached. Case 3 is the result
of an instruction having been cached previously as part of
preparation or execution by a thread within the same conflict
free region. Case 2 indicates that a thread is attempting to
execute an instruction outside of the current conflict free
region, which raises a CONFLICT interrupt. The ISR for the
interrupt stores the conflicting instruction in ρ.pc. When the
ISR exits it returns to line 8 of the RUN procedure. Afterwards,
the thread context is saved (SAVE CTX) before returning to
BUNDLE’s main scheduling loop.

It is by necessity that the cache is flushed when selecting a
new active bundle. Earlier cache loads may have populated
cache block xbits with the current XMASK value. Without
a flush, stale contents could result in spurious CONFLICT
interrupts. These additional cache flushes do not interfere with
the timing analysis of conflict free regions presented in [1],
but they do add a new context switch cost when selecting a
new active bundle—one flush per bundle switch.

IV. CONCLUSION AND ONGOING EFFORT

The proposed CONFLICT interrupt mechanism, which
prevents cache conflicts based on a XMASK filter, allows
the BUNDLE scheduling algorithm to be fully implemented.

Additionally, the proposed CONFLICT interrupt is compatible
with the ongoing efforts to expand BUNDLE from a single to
multi-task environment.

However, this work is focused on bringing the interrupt
mechanism and scheduling algorithm closer to a physical im-
plementation. The ongoing effort is to implement the hardware
components in the gem5 [15] simulator for an ARM processor,
along with implementing the BUNDLE scheduling algorithm on
top of RTEMS [16].

REFERENCES

[1] C. Tessler and N. Fisher, “BUNDLE: Real-Time Multi-Threaded
Scheduling to Reduce Cache Contention,” IEEE Real-Time Systems
Symposium, 2016.

[2] R. Arnold, F. Mueller, D. Whalley, and M. Harmon, “Bounding worst-
case instruction cache performance,” Real-Time Systems Symposium,
1994., Proceedings., pp. 172–181, Dec 1994.

[3] F. Mueller, “Static cache simulation and its applications,” Ph.D. disser-
tation, Florida State University, 1995.

[4] S. Altmeyer and C. Maiza Burguière, “Cache-related preemption delay
via useful cache blocks: Survey and redefinition,” Journal of Systems
Architecture, vol. 57, no. 7, pp. 707–719, Aug. 2011.

[5] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y.
Park, M. Lee, and C. S. Kim, “Analysis of cache-related preemption
delay in fixed-priority preemptive scheduling,” IEEE Transactions on
Computers, vol. 47, no. 6, pp. 700–713, Jun. 1998.

[6] H. S. Negi, T. Mitra, and A. Roychoudhury, “Accurate estima-
tion of cache-related preemption delay,” in Proceedings of the
1st IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis, ser. CODES+ISSS ’03. New York,
NY, USA: ACM, 2003, pp. 201–206.

[7] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” J. ACM, vol. 20, no. 1, pp.
46–61, Jan. 1973.

[8] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet, G. Bernat,
E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli, L. Kosmidis,
C. Lo, and D. Maxim, “Proartis: Probabilistically analyzable real-time
systems,” ACM Trans. Embed. Comput. Syst., vol. 12, no. 2s, May 2013.

[9] J. M. Calandrino and J. H. Anderson, “Cache-aware real-time schedul-
ing on multicore platforms: Heuristics and a case study,” in 2008
Euromicro Conference on Real-Time Systems, July 2008, pp. 299–308.

[10] A. Alhammad and R. Pellizzoni, “Time-predictable execution of mul-
tithreaded applications on multicore systems,” in Design, Automation
and Test in Europe Conference and Exhibition (DATE), March 2014,
pp. 1–6.

[11] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fifth
Edition: A Quantitative Approach, 5th ed. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2011.

[12] Intel Corporation, Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual - Volume 2, Intel Corporation, 2016. [Online]. Available:
http://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-instruction-set-
reference-manual-325383.pdf

[13] F. E. Allen, “Control flow analysis,” SIGPLAN Not., vol. 5, no. 7, pp.
1–19, Jul. 1970.

[14] ARM, ARM Cortex-A57 MPCore Processor Tech-
nical Reference Manual, ARM, 2016. [Online].
Available: http://infocenter.arm.com/help/topic/com.arm.doc.ddi0488h/
DDI0488H cortex a57 mpcore trm.pdf

[15] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5
simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1–7,
Aug. 2011.

[16] G. Bloom and J. Sherrill, “Scheduling and thread management with
rtems,” SIGBED Rev., vol. 11, no. 1, pp. 20–25, Feb. 2014. [Online].
Available: http://doi.acm.org/10.1145/2597457.2597459

126128128

